
Assignments: Problems

This is the problem set for the nuclear physics course (Spring 2023). The course contain two types of assignments:
theory and problems. Theory includes easy theoretical questions, while the problems require more thinking, with a
few of the questions being really difficult.

Regarding this problem set it is enough to choose a unique problem for this course. It is not necessary to arrive
at a correct or complete answer (as they can be hard to solve): attemps at arriving at an answer will be evaluated
positively, particularly if the idea is good.

(1) Explain why vector meson exchange generates a negative quadrupole moment in the deuteron and why pseu-
doscalar meson exchange (e.g. the pion) give us the correct sign for the quadrupole moment (check the slides
of lesson 6 for context).

(2) Explain how nuclear physics will change if chiral symmetry was broken differently: that is, instead of G =
SU(3)L⊗SU(3)R⊗U(1)L+R breaking into the subgroup F = SU(3)L+R⊗U(1)L+R, how do you think nuclear
physics will change if the conserved subgroup was F = SU(3)L−R⊗U(1)L+R instead (check the slides of lesson
12 for context).

(3) A comparison between the electromagnetic, the nuclear and the strong force: when we consider a bound state
in quantum mechanics, for instance the hydrogen atom, we see that the total mass of the bound state is a bit
smaller than their components. For example, in the hydrogen atom we will have

m(H) = (me +mp)−BH2 < (me +mp) , (1)

where B2 is the binding energy. The same happens with the deuteron

m(d) = (mp +mn)−Bd2 < (mn +mp) , (2)

and to all other nuclei

m(A,Z) = (Zmp + (A− Z)mn)−B < (Zmp + (A− Z)mn) . (3)

However, when we consider hadrons it happens exactly the contrary as here. For the pion we have

mπ > (mu +md) , (4)

where mπ ' 140 MeV and (mu +md) ∼ 8 MeV, while for the proton we have instead

mp > (2mu +md) , (5)

with mp ' 940 MeV and (2mu +md) ∼ 11 MeV. Explain why this is happening.

(4) Imagine a two-body system interacting via an attractive central potential V (r) < 0 that is short-ranged. Using
the Wronskian identity trick from lesson 15, try to argue how the phase shift for this potential will change if we
change the reduced mass of the system.

(5) Imagine a two-body system interacting via a power-law potential of the type V (r) = C/rn, with n a positive
integer. This is not a short-ranged potential and as a consequence the effective range expansion that we studied
in lesson 15 does not apply, at least completely, though in a few cases the first few parameters of this expansion
will be well defined. Find an argument explaining why for n = 1, 2, 3 the scattering length is not well defined,
while for n ≥ 4 it is. Find also the minimum value of n required for the effective range to be well-defined.

(6) In lesson 15 we commented that for a short-ranged potential showing an exponential decay at long distances
of the type V (r) = f(r) e−mr (with f(r) non-exponential), the effective range expansion only converges for
k < m/2. Try to find an argument of why this is the case.

(7) Imagine a two-body potential that is zero for r > R, that is

V (r) = V (r) θ(R− r) . (6)

Find what is the maximum value of the effective range r0 for such type of potential (check lesson 15).
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(8) As we briefly commented in lesson 15, the effective range expansion (ERE) is not valid for infinite range potentials
such as Coulomb. Yet, there exists a Coulomb ERE for proton-proton scattering that looks like

C2(η) k cot δC(k) +
1

aB
h(η) = − 1

aC
+
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2
rC k

2 +
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n=2

vn,Ck
2n , (7)

where aB is the Bohr radius (which we define as 1/(mpα), and thus a bit different from how we defined it in
lesson 2 for the electron-proton system; check also the expressions in the next problem), η = 1/(2kaB) and the
functions C2(η) and h(η) are defined as:

C2(η) =
2πη

e2πη − 1
and h(η) = η2

∞∑
n=1

1

n(n2 + η2)
− log η − γE (8)

with γE the Euler-Mascheroni constant. In the Coulomb ERE, δC is the Coulomb-modified phase shift and aC ,
rC and vn,C are the Coulomb scattering length, effective range and shape parameters. In turn the Coulomb
phase shift is derived from the asymptotic form (r → ∞) of the wave functions in the presence of a repulsive
Coulomb potential:

u(r)→ cot δC(k)F0(r)−G0(r) (9)

where the functions F0 and G0 have the asymptotic behavior

F0 → sin (kr − η log(2kr) + σ0) , (10)

G0 → − cos (kr − η log(2kr) + σ0), (11)

with σ0 defined as

e2iσ0 =
Γ(1 + iη)

Γ(1− iη)
. (12)

In addition, the behavior of F0 and G0 for kr → 0 is given by
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Try to derive the formula for the Coulomb ERE by following the steps from lesson 15 for the usual ERE for
finite range interactions.

(9) Consider proton-proton scattering at low energies, where the Coulomb scattering length is defined as

lim
k→0
C2(η) k cot δC(k) = − 1

aC
. (14)

Imagine that you want to describe proton-proton scattering with a contact-range potential (plus Coulomb),
where for simplicity we regulate the potential as

Vpp(r;Rc) = C0(Rc)
δ(r −Rc)

4πR2
c

+
1

2µ

1

aBr
θ(r −Rc) , (15)

with aB = 1/(mpα) and Rc the cutoff. By using the expressions from the previous problem and following the
same steps as in lesson 13 (but adapted to the zero energy case), find the running of the coupling C0(Rc) as a
function of the cutoff, the proton Bohr radius aB and the Coulomb scattering length aC (check also lesson 17 for
comparison purposes). Then, using the expresion you obtain, try to deduce the value of the strong scattering
length aS (that is, the scattering length in case that Coulomb was turned off) and comment on the result. In
particular, is it cutoff independent? What interpretation do you give to this fact?



3

(10) In lesson 15 we explained that the Lippmann-Schwinger equation had analytic solutions for separable potentials
of the type 〈p′|V |p〉 = λ f(p′) f(p). There are also analytic solutions of the T-matrix for potentials that are a
sum of separable pieces (which we call a and b), for instance

〈p′|V |p〉 = 〈p′|Va|p〉+ 〈p′|Vb|p〉 = λa fa(p′) fa(p) + λb fb(p
′) fb(p) . (16)

Try to find the analytic T-matrix corresponding to this particular potential.

(11) Try to solve the Lippmann-Schwinger equation for a contact-range potential with a term proportional to (p′2 +
p2), that is, for

〈p′|V |p〉 =
[
C0(Λ) + C2(Λ) (p′2 + p2)

]
f(
p′

Λ
) f(

p

Λ
) . (17)

For this the best strategy is to begin by proposing an ansatz for the T-matrix with this potential (for instance,
by playing with the first few iterations of the V + V G0V + . . . and trying to identify a pattern... or by any
other method you devise).

(12) A resonance is a quasi-bound state, i.e. a bound state at E ≥ 0 that decays after some time. The way to check
for the existence of a resonance is to look for solutions of the Schrödinger equation at complex energy[

−∇
2

2µ
+ V (r)

]
Ψ(r) = E∗Ψ(r) , (18)

where E∗ is the energy of the resonance

E∗ = ER − i
ΓR
2
, (19)

where ΓR is called the width of the resonance. The wave function of a resonant state behaves as

Ψ(r)→ eik
∗r

r
Ylm(r̂) , (20)

with k∗ =
√

2µE∗, which is the complex energy analog of the asymptotic behaviour of the bound state solution.
Equivalently, if we consider the reduced wave function ul(r) instead of the full wave function, a resonance is a
solution that behaves as

ul(r)→ eik
∗r , (21)

with k∗ a complex momentum (alternatively, check lesson 16 for a more lightweight introduction to resonances).

To show how to calculate a resonant state solution, let us consider the repulsive delta-shell potential of the
previous exercise

2µV (r) = λδ(r − a) , (22)

where λ > 0 and a is the range of the delta-shell. For λ→∞ this potential has bound state solutions for r < a,
where the binding energy is

EB =
1

2µ

(
n
π

a

)2
, (23)

with n a non-zero positive integer. If λ is not infinite, it happens that these bound state solutions can escape
the potential barrier provided by the repulsive delta-shell potential. Hence they adquire a width

EB → E∗ = ER − i
ΓR
2
, (24)



4

where the half-life of these bound states (or, more properly, resonances) is

τ =
1

ΓR
. (25)

Show that for λ very big (but not infinite), we have that

ER = EB +O(
1

λ2
) , ΓR = O(

1

λ
) . (26)

Compute the explicit expression of ΓR at order 1/λ.

(13) Consider an attractive square well with range a and strength V0, such that it has a bound state near threshold.
Now, suppose that we add a second square well that is repulsive and that acts between r = a and r = 2a. That
is, we have

V (r) = V0 θ(a− r) +W0 θ(2a− r) θ(r − a) , (27)

with V0 < 0 and W0 > 0. How does the location of the shallow bound state change with W0? As W0 increases,
does the bound state becomes a virtual state or a resonance?

(14) Consider the on-shell T-matrix

〈k|T (k)|k〉 = −2π

µ

1

− 1
a0

+ 1
2 r0 k

2 − ik
, (28)

that is, a T-matrix that contains a scattering length and an effective range (originally shown in lesson 16). Discuss
the types of poles of the previous T-matrix depending on the values of a0 and r0: under what circumstances
will we have a resonance? For the particular case in which this T-matrix has a bound state, use the technique
of calculating the residue of the T-matrix to obtain the bound state wave function. In particular find the
asymptotic normalization of the bound state wave function, that is, the AS factor in the asymptotic behavior
(r →∞) of the wave function

u(r)→ AS e
−γr . (29)

In which sense is it different from the case when r0 = 0 (that is, the case we calculated in lesson 16) ?

(15) The quadrupole moment of the deuteron can be calculated by using the well-known formula

Qd =
1

20

∫ ∞
0

dr r2w(r) (2
√

2u(r)− w(r)) , (30)

with u, w the S- and D-wave components of the wave function. However, we have not studied the derivation of
this formula, which actually makes for a good exercise. For understanding where this formula comes from, we
begin with the definition of the quadrupole moment of the deuteron

Qd = 〈Ψd(11)|Q̂33|Ψd(11)〉 , (31)

where Ψd(SmS) is the wave function for a deuteron state with spin S and third component of the spin mS (for
which we take S = mS = 1). In turn the quadrupole operator is simply

Q̂33 = ep(3z
2
p − r2p) + en(3z2n − r2p)

=
ep
4

(3z2 − r2) =
1

4
(3z2 − r2) , (32)

where in the first line we have written it in terms of the proton and neutron coordinates, while in the second
we have use the relative coordinate ~r = ~rp−~rn (with z the third component of ~r); ep and en refer to the proton
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and neutron electric charge, which we take to be ep = 1 and en = 0. Notice that for simplicity we have omited

the Dirac-delta factors and thus the matrix elements of Q̂33 are simply given by

〈Ψd|Q̂33|Ψd〉 =

∫
d3 ~rΨ†d(~r)

1

4
(3z2 − r2)Ψd(~r) . (33)

The full deuteron wave function (including the D-wave) is

Ψd(~r) =
u(r)

r
Y01
1md

(r̂) +
w(r)

r
Y21
1md

(r̂) , (34)

where Y lsjm(r̂) are generalized spherical harmonics that combine the spin and angular momentum wave functions
of the deuteron, which are define as

Y lsjm(r̂) =
∑
mlms

Ylml
(r̂)|sms〉 〈lml1ms|jm〉 , (35)

with Ylml
the standard spherical harmonics, |sms〉 the spin wave function and 〈lml1ms|jm〉 a Clebsch-Gordan

coefficient. Putting all the previous pieces together, deduce the formula for the deuteron quadrupole form factor
that we wrote at the beginning of this exercise.


