
Exercises: part 3

This is the third exercise sheet for the nuclear physics course (Spring 2022). To pass the course you are required
to complete 10 points total, and the grade will depend on how well are these exercises done. A few comments are in
order:

1. You can ask for hints on how to do exercises.

2. No copying (this is really important: you are already graduate students and are expected to do original research).

Each exercise has a different value in points: more difficult exercises give more points.
Regarding when to hand over the exercises: of course it must be before the school tell the teachers to upload the

grades, but I do not know when that will happen. Besides, a few of the exercise sets are more difficult than others,
which means that it is up to you to decide where to concentrate your efforts.

Exercises can be handed over in either Chinese or English (if in Chinese, use a really clear handwritting: the laoshi
is only used to read printed characters). They can be a picture of your handwritten exercises, or they can be in pdf
or in any other common format. You can send them via wechat or email (mpavon “at” buaa.edu.cn).

(1) Assuming that the deuteron was a pure S-wave or a pure D-wave state — a 3S1 or 3D1 partial wave in the
spectroscopic notation — show that the magnetic moment in units of the nuclear magneton should be

µ(3S1) = µp + µn = 0.88 (1)

µ(3D1) =
3

4
− 1

2
(µp + µn) = 0.31 . (2)

(2 points)

(2) As we commented in the lectures, the magnetic moment of the deuteron also receives small contributions from
two-body electromagnetic currents. For seeing how this works, it is useful to reconsider the calculation of
the standard magnetic moment of the deuteron in a more detailed way. Indeed, the magnetic moment can
be understood as the matrix element of a magnetic moment operator sandwiched between the deuteron wave
functions

µd = 〈ψd(11)|µ̂|ψd(11)〉 , (3)

where (11) = (SmS) refers to the spin state of the deuteron and the magnetic operator is given by

µ̂ = [µp~σp + µn~σn] δ(3)(~rp
′ − ~rp) δ(3)( ~rn

′ − ~rn) , (4)

with ~rp(n), ~rp(n)
′ the positions of the proton (neutron) in the initial and final states, which do not change (hence

the Dirac-delta’s). Actually, these two Dirac-deltas can be rewritten in terms of the center-of-mass radius and
the relative radius:

δ(3)(~rp
′ − ~rp) δ(3)( ~rn

′ − ~rn) = δ(3)(~R ′ − ~R) δ(3)(~r ′ − ~r) , (5)

where ~R = (~rp+~rn)/2 and ~r = ~rp−~rn (we are assuming equal masses for the proton and neutron, i.e. mp = mn).
Assuming a pure S-wave deuteron wave function for simplicity

〈~R,~r|Ψd(SmS)〉 = ei
~K·~R u(r)

r
Y00(r̂)|SmS〉 , (6)

where ~K is the total momentum of the system (which will disappear after taking the matrix elements). With
this, reproduce the previous result for an S-wave deuteron:

µ(3S1) = µp + µn . (7)

(1 point)

Now, we can go further than this and include a two-body current for the magnetic operator

µ̂ =
(

[µp~σp + µn~σn] δ(3)(~r ′ − ~r) + µ2Bf(~r ′ − ~r)
)
δ(3)(~R ′ − ~R) . (8)

Compute what will µ(3S1) look like once we include this new operator (1 point).
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(3) The quadrupole moment of the deuteron can be calculated by using the well-known formula

Qd =
1

20

∫ ∞
0

dr r2w(r) (2
√

2u(r)− w(r)) , (9)

with u, w the S- and D-wave components of the wave function. However, we have not studied the derivation of
this formula, which actually makes for a good exercise. For understanding where this formula comes from, we
begin with the definition of the quadrupole moment of the deuteron

Qd = 〈Ψd(11)|Q̂33|Ψd(11)〉 , (10)

where Ψd(SmS) is the wave function for a deuteron state with spin S and third component of the spin mS (for
which we take S = mS = 1). In turn the quadrupole operator is simply

Q̂33 = ep(3z2p − r2p) + en(3z2n − r2p)

=
ep
4

(3z2 − r2) =
1

4
(3z2 − r2) , (11)

where in the first line we have written it in terms of the proton and neutron coordinates, while in the second
we have use the relative coordinate ~r = ~rp−~rn (with z the third component of ~r); ep and en refer to the proton
and neutron electric charge, which we take to be ep = 1 and en = 0. Notice that for simplicity we have omited

the Dirac-delta factors and thus the matrix elements of Q̂33 are simply given by

〈Ψd|Q̂33|Ψd〉 =

∫
d3 ~rΨ†d(~r)

1

4
(3z2 − r2)Ψd(~r) . (12)

The full deuteron wave function (including the D-wave) is

Ψd(~r) =
u(r)

r
Y01
1md

(r̂) +
w(r)

r
Y21
1md

(r̂) , (13)

where Y ls
jm(r̂) are generalized spherical harmonics that combine the spin and angular momentum wave functions

of the deuteron, which are define as

Y ls
jm(r̂) =

∑
mlms

Ylml
(r̂)|sms〉 〈lml1ms|jm〉 , (14)

with Ylml
the standard spherical harmonics, |sms〉 the spin wave function and 〈lml1ms|jm〉 a Clebsch-Gordan

coefficient. Putting all the previous pieces together, deduce the formula for the deuteron quadrupole form factor
that we wrote at the beginning of this exercise (2 points).

(4) Even-odd and odd-even nuclei can be understood as an even-even core with spin-parity JP = 0+ plus an
impaired nucleon which generates the spin-parity and the magnetic moment of the nucleus. In particular for
the magnetic moment we can write:

µ(A) = µcore + µN = µN , (15)

because the core is 0+ and its magnetic moment is zero. The unpaired nucleon has intrinsic spin S = 1
2 and

orbital angular momentum L, which can coupled to total angular momentum J = L± 1
2 . Show that the magnetic

moment for the J = L± 1
2 configurations is

µN (J = L+
1

2
) = gL(J − 1

2
) +

1

2
gS , (16)

µN (J = L− 1

2
) = gL

J(J + 3
2 )

J + 1
− J

2(J + 1)
gS , (17)

which are called the Schmidt values (2 points).
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(5) In the vibrational model, why if we have two quadrupolar phonons (J1, J2 = 2) their angular momentum does
not couple to J = 1 and 3? (2 points) For an extra point, show explicitly why three quadrupolar phonons only
couple to J = 0, 2, 3, 4, 6 but not J = 1, 5.

(6) In the Hartree-Fock method, the mean field potential is defined as

U(~r, ~r′) = δ3(~r − ~r′)
A∑

j=1

∫
d3~r′φ∗j (~r′)V2B(~r, ~r′)φj(~r

′)−
A∑

j=1

V2B(~r, ~r′)φ∗j (~r)φj(~r
′) . (18)

Show that for a pure contact-range potential

V2B(~r, ~r′) = C δ(~r − ~r′) , (19)

the mean field potential vanishes (i.e. U(~r, ~r′) = 0). Why does this happens? How does the Skyrme force avoid
this problem? (2 points)


