
Exercises: part 2

This is the second exercise sheet for the nuclear physics course (Spring 2021). To pass the course you are required
to complete 15 points total, and the grade will depend on how well are these exercises done. A few comments are in
order:

1. You can ask for hints on how to do exercises.

2. No copying (this is really important: you are already graduate students and are expected to do original research).

Each exercise has a different value in points: more difficult exercises give more points. There will be three sets of
exercises at least, and to these you can add the exercises included in the slides of the course (they also count, even if
they are not included here). There are also special challenges, exercises that are particularly complicated and which
will give extra points to whoever solves it first or second (8 and 5 points, then 3 points to everyone else). These
challenges are naturally much more difficult and come without hints, but it is a good way to quickly solve the course.

Do not forget that there were a few exercises embedded in the slides of the online course. These exercise tend to
involve at most a really simple calculation and are a lighter alternative to the sometimes more difficult exercises in
these sets. Try them for a few easy points.

Regarding when to hand over the exercises: of course it must be before the school tell the teachers to upload the
grades, but I do not know when that will happen. Again, I would recommend to begin as soon as possible and try
to hand over maybe 5 points worth of exercises about three weeks later after being handed each of the exercises
sets. This is not compulsory, merely a recommendation to avoid ending with too much work to do at the end of the
course. Besides, a few of the exercise sets are more difficult than others (for example, this set is probably the most
complicated), which means that it is up to you to decide where to concentrate your efforts. Yet beginning soon will
only make your life easier: you will receive feedback about how well you are doing and probably corrections which
will allow you to redo the wrong exercises and obtain a better grade.

Exercises can be handed over in either Chinese or English (if in Chinese, use a really clear handwritting: the laoshi
is only used to read printed characters). They can be a picture of your handwritten exercises, or they can be in pdf
or in any other common format. You can send them via wechat or email (mpavon “at” buaa.edu.cn).

(1) Let’s assume a two-body system in S-wave, which follows the reduced Schrödinger equation

−u′′0(r) + 2µV (r)u0(r) = −γ2u0(r) , (1)

with γ2 = −2µE and E < 0 (i.e. we have a bound state). Assume a potential of the type

V (r) = 0 for r 6= 0 , (2)

which generates a bound state (despite being a contact-range potential). Show that the wave function is

u0(r) = AS e
−γr , (3)

and compute the value of AS . Show also that the mean square radius of such a bound state is 〈r2〉 = 1/(2γ2).
(1 point)

(2) Consider the l-wave reduced Schrödinger equation

−u′′l (r) +

[
2µV (r) +

l(l + 1)

r2

]
ul(r) = −γ2ul(r) , (4)

with γ2 = −2µE, E < 0 and a contact-range potential

V (r) = 0 for r 6= 0 . (5)

Find the complete form of the bound state solution for P - and D-waves (i.e. for l = 1 and l = 2)

u1(r)→ AP e
−γr (1 + . . . ) , (6)

u2(r)→ AD e
−γr (1 + . . . ) , (7)

that is, found the complete expression that goes inside the brackets. (2 points)
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(3) Knowing that the l = 0, k = 0 solution of the wave function behaves asymptotically as

u0(r)→ 1− r

a0
, (8)

with a0 the scattering length, find the scattering length for the well-known square-well potential

2µV (r) = U(R)θ(R− r) . (9)

(1 point)

(4) Now, with the square-well potential, let us assume for simplicity that the scattering length is larger than the
range of the square-well

α0

R
� 1 , (10)

which means that we can do a few Taylor expansions that will simplify the results. Now imagine that you don’t
know the potencial U(R) or R, but you know the value of the scattering length. For instance, in the two-nucleon
system we have for the singlet channel (S = 0) that the scattering length is α0 = −23.7 fm and for the triplet
channel α0 = 5.4 fm. From this try to find U = U(R;α0), i.e. U as a function of R and the scattering length. If
you find this relation, you would have solved a renormalization group equation for the two-nucleon system. (2
points)

(5) Explain step-by-step the solutions of the reduced Schrödinger equation (s-wave) for the inverse-square potential

2µV (r) =
g

r2
, (11)

following the instructions in the main text. (2 points)

(6) Explain step-by-step the solutions of the reduced Schrödinger equation (s-wave) for the delta-shell potential

V (r;Rc) =
C0(Rc)

4πR2
c

δ(r −Rc) , (12)

following the instructions in the main text. (2 points)

(7) Solve the reduced Schrödinger equation (s-wave) for the delta-shell potential

V (r;Rc) =
C0(Rc)

4πR2
c

δ(r −Rc) , (13)

with the condition of fixing C0(Rc) as to reproduce the scattering length. i.e.

C0(Rc) such that k cot δ(k)
∣∣∣
k=0

= − 1

a0
. (14)

Show that the solution of C0(Rc) is

1

C0(Rc)
=

µ

2π

(
1

a0
− 1

Rc

)
. (15)

Then compute the effective range r0 that we obtain with this potential (as fixed by the condition of reproducing
the scattering length). Remberber that the effective range r0 is the second term in the k2 expansion of

k cot δ = − 1

a0
+

1

2
r0k

2 + v2k
4 + . . . . (16)

What happens to r0 when we take Rc → 0? (2 points)
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(8) Consider a repulsive delta-shell of the type

2µV (r) = λδ(r − a) , (17)

where λ > 0 and a is the range of the delta-shell. Show that when λ→∞ this potential, despite being repulsive,
have bound states in the region r < a where the bound state energy is

EB =
1

2µ

(
n
π

a

)2
, (18)

with n = 1, 2, 3, . . . . (1 point)

(9) A resonance is a quasi-bound state, i.e. a bound state at E ≥ 0 that decays after some time. The way to check
for the existence of a resonance is to look for solutions of the Schrödinger equation at complex energy[

−∇
2

2µ
+ V (r)

]
Ψ(r) = E∗Ψ(r) , (19)

where E∗ is the energy of the resonance

E∗ = ER − i
ΓR
2
, (20)

where ΓR is called the width of the resonance. The wave function of a resonant state behaves as

Ψ(r)→ eik
∗r

r
Ylm(r̂) , (21)

with k∗ =
√

2µE∗, which is the complex energy analog of the asymptotic behaviour of the bound state solution.
Equivalently, if we consider the reduced wave function ul(r) instead of the full wave function, a resonance is a
solution that behaves as

ul(r)→ eik
∗r , (22)

with k∗ a complex momentum.

To show how to calculate a resonant state solution, let us consider the repulsive delta-shell potential of the
previous exercise

2µV (r) = λδ(r − a) , (23)

where λ > 0 and a is the range of the delta-shell. For λ→∞ this potential has bound state solutions for r < a,
where the binding energy is

EB =
1

2µ

(
n
π

a

)2
, (24)

with n a non-zero positive integer. If λ is not infinite, it happens that these bound state solutions can escape
the potential barrier provided by the repulsive delta-shell potential. Hence they adquire a width

EB → E∗ = ER − i
ΓR
2
, (25)

where the half-life of these bound states (or, more properly, resonances) is

τ =
1

ΓR
. (26)

Show that for λ very big (but not infinite), we have that

ER = EB +O(
1

λ2
) , ΓR = O(

1

λ
) . (27)

Compute the explicit expression of ΓR at order 1/λ. (3 points)
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(10) The scattering wave function behaved asymptotically as

Ψ(~r)→ ei
~k·~r + f(Ω)

eikr

r
. (28)

Alternatively, it can be written as

Ψk(~r) =
∑
l

(2l + 1)il
ul(r; k)

r
Pl(k̂ · r̂) . (29)

If we expand the plane wave and the scattering amplitude in partial waves

ei
~k·~r =

∑
l

(2l + 1)iljl(kr)Pl(k̂ · r̂) , (30)

f(k̂ · r̂) =
∑
l

(2l + 1)fl(k)Pl(k̂ · r̂) , (31)

show that by taking

ul(k; r)

r
→ eiδl [cos δl(k) jl(kr)− sin δl(k)yl(kr)] , (32)

for the asymptotic behaviour of the partial waves in the scattering wave function, we can manipulate the
expressions to obtain

fl(k) =
eiδl sin δl

k
=

1

k cot δl(k)− ik
, (33)

which is pretty simple. (2 points)

(11) When we derived the effective range expansion, we used the following trick: building Wronskian identities from
two different Schrödinger equations. In this exercise we will calculate how the scattering length changes when
the two-body potential changes, i.e.

V → V + ∆V ⇒ a0 → a0 + ∆ a0 , (34)

where it can be shown that the change in the scattering length follows the equation

∆a0
a20

= 2µ

∫ ∞
0

∆V (r)u20(r) dr +O((∆V )2) , (35)

where u0(r) is the zero energy wave function in a normalization for which u0(r) → (1 − r/a0) for r → ∞. For
this we will follow a similar logic to the one behing the derivation of the effective range expansion, that is, we
will consider two Schrödinger equations

−u′′0(r) + 2µV0(r)u0(r) = 0 , (36)

−u′′1(r) + 2µV1(r)u1(r) = 0 , (37)

where V0 and V1 are two potentials and u0, u1 are their respective zero-energy solutions normalized as

u0(r)→ 1− r

a0
and u1(r)→ 1− r

a1
, (38)

for r → ∞. Thus your aim will be to construct a suitable Wronskian identity between this two solutions, and
then assuming that V1 = V0 + ∆V0, a1 = a0 + ∆a0, etc., arrive to the previous relation between the change in
the potential and the change in the scattering length (3 points).
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(12) Consider a weakly bound system for which the wave number γ (=
√

2µB) is considerably smaller than the
exponential decay in the potential, that is, V (r) ∝ f(r)e−mr and γ � m (equivalently, the size of the wave
function is much larger than the range of the potential). In this situation the reduced wave function of the
system can be approximated by

uγ(r) ' ASe−γr . (39)

Actually, the same will be true for the positive energy (i.e. scattering state) reduced wave function, which can
be approximated by

uk(r) ' cos (kr) + cot δ(k) sin (kr) . (40)

Using the orthogonality of the bound and scattering state wave functions, i.e.∫ ∞
0

uγ(r)uk(r)dr = 0 , (41)

find the value of cot δ(k) in this case. (1 point)

(13) The Lippmann-Schwinger equation

T (E) = V + V G0T (E) , (42)

can be easily solved for a potential of the type

〈~p′|V |~p〉 = C(Λ) θ(Λ− |~p′|) θ(Λ− |~p|) , (43)

as explained in these lectures. We have also explain in the lectures that the T-matrix has poles that corresponds
to bound states

lim
E→EB

T (E)→ ResT

E − EB
, (44)

where ResT refers to the residue of the T-matrix at the pole. In turn this residue is related to the wave function
in momentum space by the relation

ResT = V |ΨB〉〈ΨB |V
= G−10 (E = EB)|ΨB〉〈ΨB |G−10 (E = EB) . (45)

With this information, determine the value of the coupling constant

C(Λ) such that T has a pole at EB = −B. (46)

that is, the value of C(Λ) such that we have a bound state at EB = −B = − γ2

2µ . Determine the wave function

too, and show that in the Λ→∞ limit

ΨB(p) =
N

p2 + γ2
, (47)

with N a normalization constant. Which is the value of N ? Also, which is the Fourier-transform of the previous
wave function into r-space? (2 points)

(14) The Yamaguchi potential is a separable potential proposed a long time ago for describing the nucleon-nucleon
interaction. It takes the form

〈p′|VY |p〉 =
λY
2µ

g(p)g(p′) , (48)

with λY a couping constant, µ the reduced mass of the system and the function g given by

g(x) =
1

β2 + x2
. (49)

For λY < 0 this potential will have a bound state with B = − γ2

2µ . Find the relation between λY , β and γ for

the Yamaguchi potential. (2 points)
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(15) Find the scattering length for the Yamaguchi potential (shown in the previous exercise). (1 point)

(16) We have already studied that for a separable potential of the type

〈p′|V |p〉 = C0 g(p′)g(p) , (50)

the solution for the T-matrix takes the form

〈p′|T (E)|p〉 = τ(E) g(p′)g(p) , (51)

with τ(E) given by

τ(E) =
1

1
C0
−
∫

d3q
(2π)3

g2(q)

E− q22µ

. (52)

Now consider the following potential

〈p′|V |p〉 =
[
C0 + C2(p2 + p′2)

]
g(p′)g(p) , (53)

which is actually a sum of two separable potentials. Find an anzatz for the T-matrix that solves the Lippmann-
Schwinger equation for the previous potential and show the explicit solution in terms of C0, C2 and g. (4
points)

(17) Up till now we have only considered S-wave separable potentials. For this exercise we will consider the P-wave
separable potential

〈~p ′|V |~p〉 = C1 ~p
′ · ~p g(p′)g(p) . (54)

Find a suitable ansatz for the T-matrix and its solution. (3 points)

(18) Within formal scattering theory, we can characterize the Born approximation as

TBorn = V . (55)

Using the Born approximation, calculate the scattering length for the one pion exchange potential:

VOPE(~q) = − g2

4f2π
~τ1 · ~τ2

~σ1 · ~q ~σ2 · ~q
~q2 +m2

π

= − g2

4f2π
~τ1 · ~τ2

1
3 ~σ1 · ~σ2 q

2

~q2 +m2
π

+ (tensor piece) , (56)

where in the second line we have explicitly separated the spin-spin piece (which contributes to the S-wave
scattering length) from the tensor piece (which does not). Using that g = 1.26, fπ = 92.4 MeV and mπ =
138 MeV, calculate the S-wave scattering length in the singlet and triplet channels from one pion exchange. (1
point)

(19) Besides the T-matrix formalism (as in the previous question), a different way to reproduce the Born approxima-
tion is the Wronskian trick we used to derive the effective range expansion. For that we consider two different
wave functions u0 and u1, such that

−u′′0(r) = k2u0(r) , (57)

−u′′1(r) + 2µV (r)u1(r) = k2u1(r) . (58)

By using suitable wave functions and their Wronskian identities, deduce the Born approximation for the S-wave
phase shifts. (2 points)

(20) It is well known that for a potential that decays exponentially at long distances

V (r) = f(r) e−mr , (59)

the effective range expansion only converges for k < (m/2). Find the reason why this is the case. (challenge!)


