
The Three Nucleon System

I. FADDEEV EQUATIONS

A. The Lippmann-Schwinger Equation and the Three Body System

We will consider a three-body system interacting via two-body forces

H = H0 + V =
3
∑

i=1

p2i
2mi

+ V , (1)

where the potential is

V = V12 + V23 + V31 . (2)

We begin by considering the Lippmann-Schwinger equation for this system

T (Z) = V + V G0(Z)T (Z) . (3)

Alternatively we can consider the bound state equation

|Ψ3B〉 = G0(Z)V |Ψ3B〉 . (4)

With the potential above it is apparent that we can easily run into a very particular type of problem when solving
the Lippmann-Schwinger equation. If we consider the matrix elements of the potential components Vij we find the
following

〈~p1 ′ ~p2
′ ~p3

′|V12|~p1 ~p2 ~p3〉 = (2π)3 δ(3)(~P12
′ − ~P12) 〈~p12 ′|V12|~p12〉, (2π)3 δ(3)(~p3 ′ − ~p3) , (5)

where ~P12 and ~p12 are the total and relative momentum of particles 1 and 2

~P12 = ~p1 + ~p2 , (6)

~p12 =
m2 ~p1 −m1 ~p2
m1 +m2

, (7)

plus similar expressions for V23 and V31. The problem of the previous expressions is the existence of two deltas for
the conservatation of the total momentum of particle pair ij and the expectator particle k, with ij = 12 and k = 3
in the example above. In the two-body system this is not a problem because we can globally the delta expressing the
conservation of total momentum

〈~p1 ′ ~p2
′|T |~p1 ~p2〉 = (2π)3 δ(3)(~P12

′ − ~P12) 〈~p12 ′|T |~p12〉 , (8)

〈~p1 ′ ~p2
′|V |~p1 ~p2〉 = (2π)3 δ(3)(~P12

′ − ~P12) 〈~p12 ′|V |~p12〉 , (9)

〈~p1 ′ ~p2
′|G0|~p1 ~p2〉 = (2π)3 δ(3)(~P12

′ − ~P12)
(2π)3 δ(3)(~p12

′ − ~p12)

E − p2

1

2m1

− p2

2

2m2

, (10)

which means that at the end we are left with the equation

〈~p ′|T |~p〉 = 〈~p ′|V |~p〉+
∫

d3~q

(2π)3
〈~p ′|V |~p〉 1

Ecm − q2

2µ

〈~p ′|T |~p〉 , (11)

where

Ecm = E − P 2

2M
, M = m1 +m2 and µ =

m1m2

m1 +m2
. (12)

But in the case of the three-body system this type of reduction is not possible. There is a global delta expressing the
conservation of the total momentum

(2π)3 δ(3)(~P ′ − ~P ) , (13)

with ~P = ~p1 + ~p2 + ~p3. This delta is indeed easy to remove. But besides this, there will be terms including the
conservation of momentum of particle 1, 2 and 3 that will make the resolution of the Lippmann-Schwinger equation
quite troublesome. Actually these delta’s expresses the conservation of when particle 1 scatters with cluster 23 (plus
permutations), but yet the resulting equations are a mess not easy dealt with.
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B. The Faddeev Equations

Here is where the idea of Faddeev enters. Faddeev proposed the following decomposition of the T-matrix

T (Z) = T (1)(Z) + T (2)(Z) + T (3)(Z) , (14)

where each of the T (k) follows the equation

T (k)(Z) = Vij + Vij G0(Z)T (Z) , (15)

with ijk = 123 or the even permutations 231 and 312. These three equations still contain the problematic deltas, but
we can get rid of them. For that we know consider the two-body T-matrices

Tij(Z) = Vij + Vij G0(Z)Tij(Z) , (16)

and the equivalent equation

(1− Vij G0(Z))
−1
Tij(Z) = Vij . (17)

Now if we rearrange the equation for T (k) as follows

[1− Vij G0(Z)] T
(k) = Vij + Vij G0(Z)

[

T (i)(Z) + T (j)(Z)
]

, (18)

and invert the [1− Vij G0(Z)] piece, we end up with the Faddeev Equations

T (k)(Z) = Tij(Z) + Tij(Z)G0(Z)
[

T (i)(Z) + T (j)(Z)
]

, (19)

which can be solved. As a matter of fact there is still a delta for the conservation of momentum of particle k in Tij ,
but not in the iterative term. This means that the equation above is actually solvable as an integral equation, just in
the same way as the two-body Lippamann-Schwinger equation is.

C. Bound State Equations

We are mostly interested in bound states, which are the most simple thing to calculate with the Faddeev equations.
For that we begin with the well-known relation

lim
Z→E3B

T (Z) → G−1
0 (Z)

|Ψ3B〉〈Ψ3B |
Z − E3B

G−1
0 (Z) . (20)

Now if we consider that

T (Z) = T (1)(Z) + T (2)(Z) + T (3)(Z) , (21)

a possible ansatz for the T (k) pole is the following

lim
Z→E3B

T (k)(Z) → G−1
0 (Z)

|ψ(k)〉〈Ψ3B |
Z − E3B

G−1
0 (Z) , (22)

where we have

|Ψ3B〉 = |ψ(1)〉+ |ψ(2)〉+ |ψ(3)〉 , (23)

which is called the Faddeev decomposition of the wave function. With this we end up with the equations

|ψ(1)〉 = G0(Z)T23(Z)
[

|ψ(2)〉+ |ψ(3)〉
]

, (24)

|ψ(2)〉 = G0(Z)T31(Z)
[

|ψ(3)〉+ |ψ(1)〉
]

, (25)

|ψ(3)〉 = G0(Z)T12(Z)
[

|ψ(1)〉+ |ψ(2)〉
]

, (26)

which are the Faddeev equations for the three-body bound state. These equations can also be written in matrix form
as follows





|ψ(1)〉
|ψ(2)〉
|ψ(3)〉



 = G0(Z)





0 T23(Z) T23(Z)
T31(Z) 0 T31(Z)
T12(Z) T12(Z) 0









|ψ(1)〉
|ψ(2)〉
|ψ(3)〉



 . (27)
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D. Jacobi Coordinates

Now it would be really good to have a closed form of the previous equations that can be solved via discretization
methods. For that the first step is to choose a suitable set of coordinates for the three body system. We would like
to have in fact the three-body equaivalent of

~P12 = ~p1 + ~p2 , (28)

~p12 =
m2 ~p1 −m1 ~p2
m1 +m2

, (29)

which allows to write the free hamiltonian as

H0 =
p21
2m1

+
p22
2m2

, (30)

=
P 2
12

2M12
+

p212
2µ12

, (31)

with M12 = m1 +m2 and µ12 = m1m2/(m1 +m2). The equivalent of this for the three body system are the Jacobi
momenta, which read as follows

~p1 =
1

M

{

(m2 +m3)~k1 −m1 (~k2 + ~k3)
}

(32)

~k23 =
m3
~k2 −m2

~k3
m2 +m3

(33)

plus permutations, with M = m1 +m2 +m3. The different permutations of the Jacobi momenta can be related with
the following equations, which can actually be quite useful

~p2 = − m2

m2 +m3
~p1 + ~k23 , (34)

~k31 = − m3M

(m1 +m3)(m2 +m3)
~p1 −

m1

m1 +m3

~k23 (35)

~p3 = − m3

m2 +m3
~p1 − ~k23 , (36)

~k12 =
m2M

(m1 +m2)(m2 +m3)
~p1 −

m1

m1 +m2

~k23 , (37)

plus permutations. The Jacobi momenta also have the following two cyclic properties

(i) ~p1 + ~p2 + ~p3 = 0 ,

(ii) m1(m2 +m3)~k23 +m2(m1 +m3)~k31 +m3(m1 +m2)~k12 = 0 .

With the Jacobi momenta we can write the free hamiltonian as

H0 =
p21
2m1

+
p22
2m2

+
p23
2m3

=
P 2

2M
+

p21
2µ1

+
k223
2µ23

, (38)

where the reduced masses are

1

µ1
=

1

m1
+

1

m2 +m3
,

1

µ23
=

1

m2
+

1

m3
. (39)

Equivalently we can also consider the Jacobi coordinates

ρ1 = r1 −
m2r2 +m3r3
m2 +m3

, (40)

r23 = r2 − r3 , (41)
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plus the relations

ρ2 = − m1

m1 +m3
ρ1 +

m3M

(m1 +m3)(m2 +m3)
r23 , (42)

r31 = −ρ1 −
m2

m2 +m3
r23 , (43)

ρ3 = − m1

m1 +m2
ρ1 −

m2M

(m1 +m2)(m2 +m3)
r23 , (44)

r12 = +ρ1 −
m3

m2 +m3
r23 , (45)

(46)

plus permutations. The Jacobi coordinates have of course the property that the free hamiltonian can be written as

H0 = − ∇2
1

2m1
− ∇2

2

2m2
− ∇2

3

2m3

= −∇2
R

2M
− ∇2

ρ1

2µ1
− ∇2

r23

2µ23
. (47)

E. Integral Form of the Faddeev Equations

Now we can use the Jacobi coordinates to write the wave function as a sum of Faddeev components

Ψ = ψ(1)(~k23, ~p1) + ψ(2)(~k31, ~p2) + ψ(3)(~k12, ~p3) , (48)

from which we can write the Faddeev bound state equations as

Ψ(1)(~k23, ~p1) =

(

Z − k223
2µ23

− p21
2µ1

)−1 ∫
d3 ~k23

′

(2π)3
〈~k23|t23(Z − k223

2µ23
)|~k23 ′〉

×
[

Ψ(2)(~k31
′, ~p2

′) + Ψ(3)(~k12
′, ~p3

′)
]

, (49)

plus permutations. Notice that in this equation the meaning of ~k31
′ , ~p2

′ and ~k12
′ , ~p3

′ is

~p2
′ = − m2

m2 +m3
~p1 + ~k23

′ , (50)

~k31
′ = − m3M

(m1 +m3)(m2 +m3)
~p1 −

m1

m1 +m3

~k23
′ (51)

~p3
′ = − m3

m2 +m3
~p1 − ~k23

′ , (52)

~k12
′ =

m2M

(m1 +m2)(m2 +m3)
~p1 −

m1

m1 +m2

~k23
′ , (53)

that is, the usual relation among Jacobi momenta but taking into account that we have to change k23 by k23
′.

II. SEPARABLE INTERACTIONS

The Faddeev equations are relatively easy to solve for separable interactions. If the two-body potentials are of the
type

〈~k ′|Vij |~k〉 = λij gk(k)gk(k
′) , (54)

then the T-matrix is

〈~k ′|tij(Z)|~k〉 = τij(Z) gk(k)gk(k
′) . (55)
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In this case there is a simple ansatz for the Faddeev components

ψ(i)(~k, ~p) = N gi(k) ai(p)

−Z + k2

2µij
+ p2

2µk

, (56)

with N a normalization constant and where the three ai(p) follow the equations

a1(p) = −τ23(Z)
∫

d3~p ′

(2π)3

[ g1

(

~p ′ + m2

m2+m3

~p
)

g2

(

−~p− m1

m1+m3

~p ′
)

−Z + 1
2µ31

(

~p+ m1

m1+m3

~p ′
)2

+ p′2

2µ2

a2(p
′)

+
g1

(

~p ′ − m3

m2+m3

~p
)

g3

(

~p− m1

m1+m2

~p ′
)

−Z + 1
2µ12

(

~p− m1

m1+m2

~p ′
)2

+ p′2

2µ3

a3(p
′)
]

, (57)

plus permutations. The previous equation can be further simplified by a convenient translation in the integral
momentum ~p ′ plus a convenient renaming of the variables, leading to

a1(p1) = τ23(Z)

∫

d3~p2
(2π)3

B12(~p1, ~p2) a2(p2)

+ τ23(Z)

∫

d3~p3
(2π)3

B13(~p1, ~p3) a3(p3) , (58)

or in an even more general form

ak(pk) = τij(Zij)

∫

d3~pi
(2π)3

Bki(~pk, ~pi) ai(pi)

+ τij(Zij)

∫

d3~p3
(2π)3

Bkj(~pk, ~pj) aj(pj) , (59)

with

Zij = Z − p2k
2µk

, (60)

and where the driving terms Bij are given by

Bij(~pi, ~pj) =
gi(~qi)gj(~qj)

Z − p2

1

2m1

− p2

2

2m2

− p2

3

2m3

, (61)

with ~p1 + ~p2 + ~p3 = 0 and

~qi =
mk~qj −mk~qk
mj +mk

, (62)

where ijk = 123, 231, 312.
The point here is that the previous equations can be solved in exactly the same way as the Lippmann-Schwinger

equation for bound states. That is, we first distinguish between the momentum and angular integral
∫

d3~pk
(2π)3

=

∫ ∞

0

p2kdpk
2π2

∫

d2p̂k
4π

(63)

perform the angular integrals (s-wave in the example below)

b0ik(pi, pk) =

∫

d2p̂k
4π

Bik(~pi, ~pk) , (64)

and discretize the momentum integral by the use of a suitable set of Gauss points

∫ ∞

0

p2kdpk
2π2

≃
N
∑

n=1

p2n
2π2

wn . (65)
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After following these steps we will end up with a 3N x 3N eigenvalue equation of the type

ain = Fin,jm(Z)ajm , (66)

where the bound state solutions are determined by the condition

det (δin,jm − Fin,jm(Z)) = 0 , (67)

and the wave functions ain are given by the eigenvector corresponding to the zero eigenvalue of the matrix from which
we compute the determinant.

III. THE THREE BOSON SYSTEM AND THE EFIMOV EFFECT

Now I consider the case of three identical bosons, for which the wave function is symmetric under permutations of
the particles. This in turn implies that

ψ(1)(~k, ~p) = ψ(2)(~k, ~p) = ψ(3)(~k, ~p) = ψ(~k, ~p) , (68)

plus ψ(~k, ~p) = ψ(−~k, ~p). The wave function can be written as

Ψ = ψ(~k23, ~p1) + ψ(~k31, ~p2) + ψ(~k12, ~p3) , (69)

where the Faddeev equation for ψ is

ψ(~k, ~p) =

(

Z − 3

4

p2

m2
− k2

m2

)−1 ∫
d3p′

(2π)3

[

〈~k|t(Z − 3

4

p2

m2
)|~p
2
+ ~p ′)〉

+ 〈~k|t(Z − 3

4

p2

m2
)| − ~p

2
− ~p ′)〉

]

ψ(~p+
~p ′

2
, ~p ′) . (70)

For separable interactions, we can again write t and ψ as

〈~k ′|t(Z)|~k〉 = τ(Z) g(k′) g(k) , (71)

ψ(~k, ~p) =
a(~p)g(k)

k2 + 3
4p

2 + γ2
, (72)

from which it follows that the equation for a(~p) is

a(~p) = −2mτ(Z − 3

4

p2

m
)

∫

d3~p ′

(2π)3

g
(∣

∣

∣~p+ ~p ′

2

∣

∣

∣

)

g
(∣

∣

∣

~p
2 + ~p ′

∣

∣

∣

)

γ2 + p2 + p′2 + ~p · ~p ′
a(~p ′) . (73)

This can be further simplified for contact-range interactions. If we ignore the finite cut-off we have g(k) = 1. For
τ(Z), we have

τ(Z) =
4π

m

1
1
a2

+ i
√
mZ

for Z > 0 , (74)

τ(Z) =
4π

m

1
1
a2

−
√
−mZ

for Z < 0 , (75)

where a2 is the two-body scattering length. Including this into the previous equation, it now further simplifies to

p a(p) = − 2

π

1

1
a2

−
√

3
4p

2 −mZ

∫ ∞

0

dp′ log

(

γ2 + p2 + p′2 + pp′

γ2 + p2 + p′2 − pp′

)

p′a(p′) , (76)

where we have assumed that a(~p) = a(p) (s-wave). Now we can analyze the large p limit of this equation, i.e. p≫ 1
a2

and p≫
√
−mZ, which is

p2 a(p) =
4

π
√
3

∫ ∞

0

dp′

p′
log

(

γ2 + p2 + p′2 + pp′

γ2 + p2 + p′2 − pp′

)

p′
2
a(p′) . (77)
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If we define b(p) = p2 a(p), we have the following

b(p) =
4

π
√
3

∫ ∞

0

dp′
b(p′)

p′
log

(

p2 + p′2 + pp′

p2 + p′2 − pp′

)

. (78)

The equation for b(p) is scale invariant and admits a solution of the type b(p) = ps, which leads to

1 =
4

π
√
3

∫ ∞

0

dxxs−1 log

(

x2 + x+ 1

x2 − x+ 1

)

=
4

π
√
3
IEfimov(s) . (79)

Taking into account that

IEfimov(s) =
2π

s

sin (πs/6)

cos (πs/2)
, (80)

we end up with

1− 8√
3 s

sin πs
6

cos πs
2

= 0 , (81)

for which there is the solution s = ±is0 with s0 = 1.00624. Putting all the pieces together, we have a wave function
solution determined by the Faddeev component ψ:

ψ(k, p) = N b(p)

p2
1

γ23 + k2 + 3
4p

2
, (82)

with N a normalization constant and γ3 the three-body bound state binding momentum. We have that b(p) behaves
as

b(p) → sin
[

s0 log
( p

Λ∗

)]

, (83)

for p→ ∞ (or more accurately, for p a2 ≫ 1). In the expression above Λ∗ is a scale we have to introduce for fixing the
solution. It is also easy to check that for p a2 ≫ 1 (or for a2 → 0) the wave function displays discrete scale invariance

ψ(λ0k, λ0p, λ0γ3) =
1

λ40
ψ(k, p, γ3) , (84)

with λ0 = eπ/s0 ≃ 22.69. This property in turn implies the existence of an infinite number of bound states. Why? If
we do the change

γ3 → γ′3 = λ0 γ3 , (85)

then we can construct a wave function that is a solution for γ′3. This means, that if we have a bound state at E0 then
we have a second bound state at λ20E0 and also at E0/λ

2
0. As a consequence we have in principle an infinite number

of bound states. This is called the Efimov effect.

IV. THE THREE NUCLEON SYSTEM

Now we can write the Faddeev equations for the three nucleon system with separable interactions, e.g. contact
interactions. The first step is to remember that a nucleon is characterized by its spin and isospin quantum numbers,
i.e.

|N〉 = |1
2
mS〉S |1

2
mI〉I , (86)

where we have factored the nucleon into a spin and isospin wave function. When we have a two nucleon system in
the S-wave, owing to the antisymmetry of the wave function, we can write

|NN(S)〉 = |00〉S |1mI〉I , (87)

|NN(T )〉 = |1mS〉S |00〉I , (88)
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FIG. 1. A graphical representation of the Efimov effect: if the scattering length of a boson pair in a three boson system goes
to infinity, a → ∞, then a tower of three body bound state appears. The binding energy of the n-th and (n + 1)-th excited
state are related by En ≃ 521En+1.

where the first line represents the singlet 1S0 channel and the second the triplet 3S1 channel. A separable potential
in the singlet and triplet channels can be written as

VS = λS g(k
′)g(k) , (89)

VT = λT g(k
′)g(k) , (90)

where the triplet interaction must be tuned as to reproduce the deuteron bound state. For the three body case, it
happens that the triton quantum numbers are S = 1

2 and I = 1
2 . Besides, for the triton it is more probable to bind if

the spatial wave function is symmetric, which implies that we have to construct a spin-isospin wave function that is
antisymmetric. Yet this is not so trivial as it might appear at first look. Thus we will take a constructive approach
and we will begin with a wave function that is symmetric with respect to particles 1 and 2. The first step is to
construct the spin and isospin wave functions of the three nucleon system. For that we first couple spin of particles 1
and 2 to obtain S12, which is then coupled to spin of particle 3 to form the total spin ST = 1

2 :

|ST =
1

2
〉 = |S12 ⊗

1

2
〉 . (91)

We also do exactly the same with the isospin wave function

|IT =
1

2
〉 = |I12 ⊗

1

2
〉 . (92)

Now if we want to have a symmetric spatial wave function for particles 1 and 2 we are left with the two spin-isospin
combinations that are antisymmetric:

|112 ⊗
1

2
〉S |012 ⊗

1

2
〉I and |012 ⊗

1

2
〉S |112 ⊗

1

2
〉I . (93)

From this we can write the wave function as

Ψ3N = [ψS(k23, p1) + ψS(k31, p2) + φS(k12, p3)] |012 ⊗
1

2
〉S |112 ⊗

1

2
〉I

+ [ψT (k23, p1) + ψT (k31, p2) + φT (k12, p3)] |112 ⊗
1

2
〉S |012 ⊗

1

2
〉I (94)

which is antisymmetric with respect to Π12

Π12|Ψ3N 〉 = −|Ψ3N 〉 . (95)
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Now to make the wave function fully antisymmetric, we can proceed in the following way: we make the wave function
to be symmetric under the permutation Π123

Π123|Ψ3N 〉 = |Ψ3N 〉 . (96)

Why? The permutation Π123 consist on making the changes 1 → 2, 2 → 3 and 3 → 1. This is in turn equivalent to
do two permutations

Π123 = Π23Π12 , (97)

which can be checked to be the same. Now the thing is that with Π12 and Π123 we can construct any permutation of
the system. This can be proven by just building ¶23 and ¶31

Π23 = Π12 Π123 , (98)

Π31 = Π23 Π123 = Π2
12 Π123 . (99)

Now we can do the permutation of the wave function, which is not so difficult

Π123 |Ψ3N 〉 = [ψS(k31, p2) + ψS(k12, p1) + φS(k23, p2)] |
1

2
⊗ 023〉S |1

2
⊗ 123〉I ,

+ [ψT (k31, p2) + ψT (k12, p1) + φT (k23, p2)] |
1

2
⊗ 123〉S |1

2
⊗ 023〉I , (100)

which is to be compared with the original wave function. Except that there is a catch: the spin and isospin wave
functions are not the original ones. The original spin (isospin) wave functions first coupled particles 12 and then
proceed to couple particle 3. The new spin (isospin) wave function are constructed in a different order and hence they
are different than the original ones. Rewritting them in terms of the original wave functions is the tricky part.
Now the thing is to figure out how it works this thing of exchanging the spin and isospin couplings. We can begin

with a very simple example: three spin 1
2 particles coupled to S = 3

2 . In this case, if we couple first particle 12 and
then add particle 3 the outcome is pretty simple

|112 ⊗
1

2
(S =

3

2
)〉 , (101)

where we are explicitly indicating that the total spin is 3
2 . In principle if we permute this state, we have that

Π123|112 ⊗
1

2
(S =

3

2
)〉 = |1

2
⊗ 123 ⊗ (S =

3

2
)〉 . (102)

that is, we change the order of how we couple the states. But if we go back to the original S = 3
2 state and consider

the case for which with MS = 3
2 we will see that

|112 ⊗
1

2
(S =

3

2
,Ms =

3

2
)〉 = |+++〉 , (103)

where |+〉 = | 12 1
2 〉 is the spin “up” state. From this we see that this state is completely symmetric. In fact we can

check that the symmetry of the S = 3
2 state is independent of MS . This means that when we apply the permutation

Π123 we will get the following

Π123|112 ⊗
1

2
(S =

3

2
)〉 = |112 ⊗

1

2
(S =

3

2
)〉 = |1

2
⊗ 123 ⊗ (S =

3

2
)〉 , (104)

and we are left with the conclusion that

|112 ⊗
1

2
(S =

3

2
)〉 = |1

2
⊗ 123 ⊗ (S =

3

2
)〉 . (105)

The cases with spin 1
2 are more complicated because they are not eigenvalues of the permutation operator and hence

a permutation will in general mix them

Π123|012 ⊗
1

2
〉 1

2

= |1
2
⊗ 012〉 1

2

= a0|012 ⊗
1

2
〉 1

2

+ a1|112 ⊗
1

2
〉 1

2

, (106)

plus a similar equation for the |112 ⊗ 1
2 〉 case. Concrete calculations show that

Π123

(

|012 ⊗ 1
2 〉 1

2

|112 ⊗ 1
2 〉 1

2

)

=

(

1
2

√
3
2

−
√
3
2

1
2

) (

| 12 ⊗ 023〉 1

2

| 12 ⊗ 112〉 1

2

)

(107)
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which you can try as an exercise. From now on we will be back to our usual notation, in which if we are coupling
to total spin (isospin) S = 1

2 (I = 1
2 ) we will not indicate it. That is

|112 ⊗
1

2
〉 ≡ |112 ⊗

1

2
〉 1

2

or |112 ⊗
1

2
(S =

1

2
)〉 (108)

Now if we permute the combinations that appear in the wave function

Π123 |012 ⊗
1

2
〉S |112 ⊗

1

2
〉I = +

1

4
|1
2
⊗ 023〉S |1

2
⊗ 123〉I −

3

4
|1
2
⊗ 123〉S |1

2
⊗ 023〉I + . . . , (109)

Π123 |112 ⊗
1

2
〉S |012 ⊗

1

2
〉I = −3

4
|1
2
⊗ 023〉S |1

2
⊗ 123〉I +

1

4
|1
2
⊗ 123〉S |1

2
⊗ 023〉I + . . . , (110)

where the dots indicate contributions that will be symmetric under the permutation of particles 23. These contribu-
tions are there, but will contribute to components of the wave function in which a two-body subsystem is in P-wave
and the third body is also in relative P-wave with the two-body subsystem. These components are expected to be less
important than the pure S-wave components that we are considering for the moment, yet they should be considered
in a Faddeev calculation with long range forces. The previous permutation can also be written more compactly in
matrix form

Π123

(

|012 ⊗ 1
2 〉S |112 ⊗ 1

2 〉I
|112 ⊗ 1

2 〉S |012 ⊗ 1
2 〉I

)

=

(

+ 1
4 − 3

4
− 3

4 + 1
4

) (

| 12 ⊗ 023〉S | 12 ⊗ 123〉I
| 12 ⊗ 123〉S | 12 ⊗ 023〉I

)

+ . . . , (111)

plus the other combinations that require a P-wave spatial wave function. From this we obtain

Π123 |Ψ3N 〉 =
{

+
1

4
[ψS(k31, p2) + ψS(k12, p1) + φS(k23, p2)]−

3

4
[ψT (k31, p2) + ψT (k12, p1) + φT (k23, p2)]

}

|0⊗ 1

2
〉S |1⊗ 1

2
〉I ,

+

{

−3

4
[ψS(k31, p2) + ψS(k12, p1) + φS(k23, p2)] +

1

4
[ψT (k31, p2) + ψT (k12, p1) + φT (k23, p2)]

}

|1⊗ 1

2
〉S |0⊗ 1

2
〉I .

(112)

We remind that the symmetry/antisymmetry of the wave function requires

Π123 |Ψ3N 〉 = |Ψ3N 〉 , (113)

where notice that for this type of permutation it does not matter whether we have bosons or fermions. From the
antisymmetry condition we thus obtain

ψS(k, p) = +
1

4
φS(k, p)−

3

4
φT (k, p) , (114)

ψT (k, p) = −3

4
φS(k, p) +

1

4
φT (k, p) . (115)

If we now propose the usual ansatz

φS(k, p) =
g(k)

γ2 + k2 + 3
4 p

2
aS(p) , (116)

φT (k, p) =
g(k)

γ2 + k2 + 3
4 p

2
aT (p) , (117)

we end up with the equations

aS(p3) = 2 τS(Z12)

∫

d3p1
(2π)3

B31(p3, p1)

[

+
1

4
aS(p1)−

3

4
aT (p1)

]

, (118)

aT (p3) = 2 τT (Z12)

∫

d3p1
(2π)3

B31(p3, p1)

[

−3

4
aS(p1) +

1

4
aT (p1)

]

, (119)

which are indeed a little set of really cute equations.
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A. Relation with the Efimov Effect

If we take the limit in which the singlet and triplet scattering lengths go to infinity

aS → ∞ and aT → ∞ , (120)

then the bound state equations for the triton reduce to the ones for the three boson system in the unitary limit. In
this previous limit

τS(Z12), τT (Z12) → − 4π

mN

1√−mNZ12

(121)

which also means that τS = τT . In addition if we take aS(p) = −aT (p) = a(p), then we trivially end up with the
equation

p2 a(p) =
4

π
√
3

∫ ∞

0

dp′

p′
log

(

γ2 + p2 + p′2 + pp′

γ2 + p2 + p′2 − pp′

)

p′
2
a(p′) , (122)

that is, the equation we already obtained for the three boson system. This happens to be relevant to nuclear physics.
As we have explained previously in this course, it happens that the two-nucleon scattering lengths are relatively big
in comparison with the pion mass

mπaS ≃ −16.6 and mπaT ≃ 3.8 . (123)

Though the triplet scattering length is not that big, actually we can try to take the limit mπaT → ∞ and expect to
be able to describe nuclear physics with a relative error of 1/(mπaT ) ∼ 30%, which is not bad at all considering the
type of simple model we are using.


