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Abstract: 
We present a comprehensive field-theoretical meson-exchange model for the nucleon-nucleon (NN) interaction below pion production 

threshold consisting of all diagrams which we believe to be important. Fictitious terms, which characterized most boson-exchange models of the 
past, are strictly avoided. In particular, apart from the well-known one-pion and one-omega exchange, our model contains an explicit determination 
of the 2~r-exchange contribution. In this 21r-exchange model we take into account virtual isobar excitation and direct re;r-interactions consistent with 
the empirical information from ~N and aver scattering. In addition, higher-order diagrams involving heavy-meson exchanges are included, especially 
the combination of ~r and p which proves to be crucial for a quantitative description of the low angular momentum phase shifts of lqN scattering. 
Explicit predictions are given for NN scattering and for the deuteron. The overall description of the data is of excellent quality. 

The comprehensive character of our model yields a definite prediction of the meson-nucleon (-isobar) vertex parameters (coul~ling constants and 
cutoff parameters of the vertex form factors). These result from our quantitative fit to the NN data and may in the future be related to QCD. The 
model provides a sound basis for addressing several important issues in nuclear physics, such as three-body forces, meson-exchange currents, charge 
symmetry and independence violations, relativistic effects and effects of the nuclear medium on the NN force in the nuclear many-body problem. 

We also present a simple parametrization of the model by one-boson-exchange terms (in momentum as well as in coordinate space). This is 
convenient for practical purposes and may be useful in applications to nuclear st/'ucture physics. 

1. Introduction 

It is now widely believed that quantum chromodynamics (QCD) [1] is the fundamental theory of 
strong interactions. On that basis, the nucleon-nucleon (NN) interaction is completely determined by 
the underlying quark-gluon dynamics. However, due to the formidable mathematical problems raised 
by the non-perturbative character of QCD in the low-energy regime, we are still far from a quantitative 
understanding of the NN force from this point of view. 

Closely related and of even broader relevance is the problem of the confinement of hadrons. Here, 
the intractability of low-energy QCD* is usualiy circumvented by the ad hoc introduction of (picking 
one of the most popular euphemisms in modem physics) "QCD-inspired" models, e.g. bag or potential 
models. There are naturally large uncertainties in the details of these models. For example, in the 
context of bag models, a crucial question is the size of the confinement radius R..Should R turn out to 
be small (R < 0.5 fan) as suggested by the little bag [3], there would be enough room for conventional 
hadrons like nucleons, mesons and isobars to represent the essential degrees of freedom for a wide 
range of nuclear physics phenomena, and meson exchange would be a valid picture. In that case, the 
appropriate procedure is to construct the nuclear force from meson-nucleon and meson-isobar 
vertices, these being understood as effective descriptions of complicated multi-~lgark reactions. Ha&on 
masses, coupling constants and vertex form factors, which are the physical parameters of such a meson 
theory, are then left to be ultimately explained by QCD [4, 5]. 

Genuinely new quark-gluon processes, which do not belong to the class of diagrams represented by 
meson exchange, may occur only for overlapping hadrons. Therefore, their role depends decisively on 
the hadron size. As discussed, for small R (<0.5 fro) they should ha~'e a negligible influence provided 
the consideration is restricted to phenomena involving comparatively low enrrgies and momentum 
transfer, such as NN scattering up to a laboratory energy of about 300 MeV and nuclear binding 
energies. In this case, the introduction of meson-nucleon (-isobar) vertex form factors would be a 
sufficient accounting of the inner structure of the hadrons and its consequences. 

* Presently the only promising treatment of low-energy QCD !s lattice-gauge theory [2]. However, because of computational restrictions on 
present-day computers, lattice QCD is not (yet) a practical tool for everyday nuclear physics. 
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The situation may be substantially different if the bag radius is large (R ~> 0.8 fm) as is suggested by 
the MIT-bag [6] or the cloudy-bag model [7]. In a naive interpretation these radii may tolerate just the 
pion, leave no room for the heavier scalar and vector bosons, and instead require the inclusion of 
genuine quark-gluon-exchange processes as dominant contributions. The question of whether such 
processes can indeed quantitatively take over the empirically established role of higher-mass exchanges 
(mainly building up the short-range part of the NN force) has been studied by various groups in recent 
years [8-16]. We believe that this is still an open question. Although there seems to be no problem in 
obtaining sufficient repulsion at short range, all known models of this kind create either too little or no 
intermediate-range attraction (which is sometimes artificially cured by adding a suitable attraction 
arising from scalar boson exchange). Moreover, it has not yet been demonstrated convincingly that such 
models can supply the proper ratio of spin-orbit strength to central repulsion. In addition to 
uncertainties inherent in the nonrelativistic potential models (as, e.g., the questions of nucleon size, the 
effect of configuration mixing or the choice of the quark-quark interaction) there is a much more 
serious problem; Namely, the quark-quark spin-orbit interaction, which provides the NN spin-orbit 
force in such calculations, seems to be suppressed in baryons, since corresponding spin-orbit splittings 
have not been seen in the excited states of the nucleon [17]. Thus, we are as yet far from a quantitative 
and consistent description of the one- and two-baryon system using such potential models. 

An alternative approach to low-energy QCD is offered by the Skyrmion model. Following a proposal 
by 't Hooft [!8], QCD is generalized from SU(3) to an SU(Nc) gauge group, with N c the number of 
colours. In this generalization, 1/Nc is the coupling constant. If one assumes confinement, then, in the 
large N c limit, QCD is supposedly equivalent to a local meson field theory. Furthermore, in this theory 
it can be shown that baryons arise as soliton solutions of the meson field equations [19], an idea which 
was advanced by Skyrme [20] about twenty years ago. In this "Skyrmion" model the exact size of the 
bag radius does not play a decisive role and can, in fact, be rather small [21]. This feature is most 
beautifully described by the magic picture of the "Cheshire cat" [22] (here, the bag wall) which tends to 
fade away when examined closely, leaving behind only its grin (here, the confinement) [23]. Vector 
bosons can be introduced into the Skyrmion model in a natural way [24]. More details of this approach 
to low-energy QCD are given in the Zahed-Brown review [25]. 

Thus, from the point of view of models which in some sense may claim to approximate QCD, there 
are strong theoretical indications that meson theory* is the appropriate concept for the NN interaction 
and for the domain of nuclear phyics in general. 

In addition, there is traditionally strong phenomenological evidence for the meson-exchange picture 
of nuclear forces and for the presence of mesons in nuclei [26]. The peripheral partial waves in NN 
scattering furnished early evidence of the one-pion exchange (see section 2 for references) and, more 
recently, the asymptotic DIS state ratio of the deuteron provided further proof for the reality of the 
pion in the two-nucleon system [27]. Moreover, it is well known that meson-exchange current 
contributions are crucial in several reactions involving very light nuclei, such as the radiative capture of 
protons by thermal neutrons, the electrodisintegration of the deuteron near threshold at backward 
angles and the magnetic form factor of 3He [26]. In fact, meson exchange is at present, and in the 
foreseeable futu/'e, the only quantitative model for the NN interaction (apart from purely 
phenomenological treatments, of course). Such a representation of the nuclear force, provided by an 

* We should note that nowadays the term "meson theory" is strictly speaking incorrect, since a "meson theory" in the fundamental sense of the 
word "theory" does not exist. (QCD may turn out to be a theory.) However, for historical reasons, this term is well established - due to the fact 
that originally it was really believed to be a theory- and that is why we will continue using it. More correctly, one should speak of something like an 
"effective meson model". 
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underlying physical picture, is needed as a starting point for a consistent description of the large field of 
nuclear structure physics including the important subtleties due to mesonic and isobar degrees of 
freedom. 

Motivated by the arguments given above we present in this paper a model for the NN interaction 
which is based solely on nucleons, isobars and mesons, these being treated on an equal footing. We 
develop this model step by step starting with the long-range contributions and gradually proceeding to 
shorter ranges. At each step we make a quantitative comparison with empirical data. 

In developing this model, it is our principal intention to work on as broad and well-founded a basis 
as possible and to use an approach that is "complete" insofar as it includes all processes within the 
framework of meson theory which reasonably contribute to the NN interaction in the energy region 
below pion production threshold. In addition, the derivation is intended to be reliable and unambiguous 
from the field-theoretical point of view. 

Let us state in more detail what we mean by some of these points. First and most obviously, we want 
to use only existing mesons (and not include any fictitious ones). Secondly, apart from the well-known 
one-particle exchange, we will also include multi-meson exchange and, thus, go far beyond the 
traditional one-boson-exchange model. It will be important to consider correlated as well as uncorre- 
lated multi-particle exchange. Thirdly, in view of the relationship between the mass of the exchanged 
meson(s) and the range of the corresponding force we will start with the long-range component. Step by 
step, we will then include all relevant diagrams with increasing exchanged mass up to the cutoff mass 
used in the meson-nucleon vertex functions. The use of such "cutoffs" is natural in the light of the 
discussion given above. They suppress meson exchange for small distances. In fact, such form factors 
were originally introduced into meson theory, in a purely ad hoc way, to supply sufficiently rapid falloff 
of potentials at high momenta so that a solution of the scattering equation could be obtained. Now, due 
to the extended quark structure of hadrons, the form factor is a theoretically well-founded concept since 
it is related to the finite size of the hadron. Anticipating part of our results: We obtain cutoff masses in 
the range of 1.2-1.5 GeV. Consequently we include diagrams up to a total exchanged mass of about 
1 GeV. 

Finally, we will be concerned with some of the subtleties of field theory (more about this in section 
3). We avoid nonrelativistic approximations and take meson retardation (recoil effects) into account. 

There are many reasons why we pursue this thorough and comprehensive approach to the NN 
interaction. First there is a rather basic motivation: one wants to know if, and to what extent, meson 
exchange alone is able-to provide a quantitative model for the NN interaction. Further, this 
field-theoretical approach provides an unambiguously defined off-shell behaviour of the nuclear force. 
The underlying formalism allows for a consistent extension of meson exchange up to intermediate 
energies, i.e. above pion production threshold. Furthermore, the set of diagrams contributing to the 
NN interaction forms a sound basis for a consistent generalization to three-body forces and meson- 
exchange-current contributions to the electromagnetic properties of nuclei (e.g., the deuteron and 3He). 
Moreover, the explicit field-theoretical description of the processes contributing to the nuclear force 
provides a basis for the consideration of relativistic effects and of medium effects on the nuclear force 
when applied in the nuclear many-body problem. The model is also essential for the consideration of 
charge independence and. charge-symmetry breaking of the nuclear force due to the mass differences 
between the charged states of mesons, nucleons and isobars. Finally, the NN interaction implied by the 
NN interaction due to G-parity can be determined in an unambiguous way. 

The paper is divided into eleven sections and six appendices. After a historical retrospection in 
section 2, we present the basic features and assumptions of our model in section 3. The explicit 



R. Macl, leidt et al., The Bonn mesot,.¢rchange model for the nucleon-nucleon interaction 

construction begins with the single-particle-exchange mechanisms in section 4. Section 5 contains our 
model for the 2~-exchange contribution, which we compare with results from dispersion theory. 
Combined with the single-particle-exchange contributions of section 4, it already provides a good 
description of the higher angular momentum phase shifts. In the next section, we demonstrate the 
importance of ~rp contributions for a quantitative fit of the phase shifts in the lower partial waves. We 
also show that the ¢-boson used in one-boson-exchange models represents an effective description of 2~r 
(apart from p) plus ~rp exchange. In section 7 further (irreducible) 3~r and 41r exchanges are considered 
and arguments for the convergence of the diagrammatic expansion are discussed. In section 8 we 
present the resulting NN data (phase shifts up to 300 MeV nucleon laboratory energy, deuteron and 
effective range parameters and also some observables of NN scattering). We also discuss the values of 
the meson parameters (coupling constants, masses and cutoff parameters) which have been obtained in 
describing the NN data and compare them with information obtained from other sources. Section 9 
contains a simple parametrization of our model in terms of one-boson-exchanges. These are given in 
momentum as well as in coordinate space and should be convenient for applications in nuclear structure 
physics. In section 10 we indicate some of the particular and favourable consequences, to which our 
model may lead in nuclear structure. Finally, section 11 contains a summary and some conclusions. 

2. Historical perspective* 

The meson theory of nuclear forces has a long history. Therefore, before going into the details of the 
present work it appears appropriate to provide the historical background. We briefly review the major 
ideas and previous efforts in the field. Especially, we want to stress the important developments of 
which our work is a continuation. Also, the relevance of the present study may become more apparent 
by comparison with the numerous attempts of the past. 

Historically, the principal idea underlying our concept goes back to Yukawa's fundamental hypo- 
thesis, stated in 1935, that the nuclear force is mediated by massive-particle exchange [29]. Though, 
over the years, the basic understanding of that idea has undergone modifications (namely, from a more 
fundamental to a more effective view), the principal motivation has remained the same ever since. 
Massive particle exchange suggests itself as a particularly adequate tool for describing the empirically 
known properties of the NN interaction. With regard to the finite range of the nuclear force, this aspect 
is reflected in the relationship between the mass of the exchanged particle and the range of the 
corresponding force, for which Wick [30] provided a specially plastic picture. 

The original Yukawa-idea of a scalar field interacting with nucleons was soon extended to vector 
(Proca [31]) and then to pseudoscalar and pseudovector fields (Kemmer [32]). Mixed theories, in 
particular the combination of vector and pseudoscalar fields, were already considered in the 1940s by 
M¢ller and Rosenfeld [33] and by Schwinger [34]. The inclusion of a pseudoscalar field was suggested 
by the discovery of the quadrupole moment of the deuteron [35], the sign of which was given correctly 
by the exchange of an isovector, pseudoscalar boson. This led to the conjecture that such a meson was 
very likely to exist (Pauli [36]) long before the pion was found and its spin and parity determined [37]. 

After the discovery of the pion in 1947/48 [38] more systematic work started, for which Taketani, 
Nakamura and Sasaki [39] (TNS) set the framework in 1951. They proposed to subdivide the range of 
the nuclear force into three regions. The far-sighted character of this proposal becomes evident from 

* For a more detailed historical review see the corresponding chapter of ref. [28]. 
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the fact that nowadays, particularly in view of QCD-inspired approaches to the nuclear force, this 
subdivision is still physically most meaningful. TNS distinguish a "classical" (long-range, r > 2 fin; r 
denotes the distance between the centres of two nucleons), a "dynamical" (intermediate range, 
1 fin ~ r ~ 2 fin) and a "phenomenological" or core (short-range, r ~ 1 fin) region. The classical region 
is dominated by one-pion exchange. In the intermediate range the two-pion exchange is most 
important, although heavier-meson exchange (like to) also becomes relevant. Finally, in the core region 
many different processes play a role. There are multi-pion exchange, heavy mesons of various kinds and 
(from today's point of view) genuine quark-gluon exchange. 

The TNS program is of utmost theoretical and practical importance. It allows for a stepwise 
exploration of the nuclear force and permits, if necessary and suggested by theory, a different 
derivation for different parts of the force. Thus, when developing an approach to the NN interaction, 
one does not have to face the whole problem with all its complexities at once. 

In the 1950s the one-pion exchange became well established as the long-range part of the nuclear 
force. The evidence came from small-angle NN scattering (or high angular-momentum states) [40] and 
from the deuteron [41]. Tremendous problems occurred when the 2~r-exchange contribution to the NN 
interaction was first attacked. Various approaches pursued in the 1950s, the best known being those by 
Taketani, Machida, Onuma [42] and by Brueckner and Watson [43], differed substantially from each 
other, both conceptually and quantitatively. None was doing well in comparison to experiment. In 
particular, it turned out to be impossible to derive a sufficiently strong spin-orbit force from 
2It-exchange [44, 45]. 

The experimental discovery of heavy mesons in the early 1960s, especially vector bosons, broke 
finally the deadlock situation in meson theory left by the previous decade. The existence of vector 
mesons had been suggested already from the empirical evidence for a strong short-ranged spin-orbit 
force and from the electromagnetic structure of the nucleon [46]. The next phase started: one-boson- 
exchange (OBE) models [47]. The basic assumption of these models was that multi-pion exchange 
could be represented in an adequate way by the exchange of appropriate multi-pion resonances. Thus, 
it was hoped that the uncorrelated multi-pion-exchange contribution (apart from iterative contributions 
which are generated by the unitarizing equation) was negligible. This assumption was certainly too 
extreme, especially since the existence of a low-lying 2rr S-wave resonance has never been confirmed 
experimentally [48]. Still, the great merit of the OBE model is that it demonstrates dearly the 
importance of vector bosons and correlated particle exchange in general. It further provides a simple 
parametrization of the nuclear force, which can account quantitatively for the empirical NN data using 
very few parameters [49-54]. The success of the OBE model also reveals why the pion program of the 
1950s failed: correlations (interactions) between pions had not been considered. 

However, as indicated above, conceptually the OBE model was not satisfactory. More "complete" 
approaches to the nuclear force problem were finally pursued along two lines: by dispersion relations 
and in the framework of field theory. 

In the dispersion-theoretical approach to 2,rr-exchange, ~rN and ~r~r data are used to construct the NN 
amplitude, which is obtained on the energy shell. Correlated, as well as uncorrelated 2~r-exchange, is 
automatically included. After early work on this concept in the 1960s by many groups [47, 55], NN 
potentials based in part on this approach were developed in the 1970s, in particular by the Stony Brook 
[56, 57] and the Paris group [58-60]. To obtain a full nuclear force, the dispersion-theoretical 
2~r-exchange contribution is complemented by OPE and to-exchange, as well as by an arbitrary 
phenomenological short-range potential. In the case of the Paris potential, the final result is paramet- 
rized by means of static Yukawa terms [60]. 
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However, such a simplified representation of the nuclear force is insufficient in many areas of nuclear 
physics. If one takes the concept of meson exchange seriously, an explicit description of the processes 
contributing to the NN interaction is necessary. As already mentioned in the introduction, this is 
required for a consistent calculation of pion production processes as well as three-body forces and 
meson-exchange currents. Also, a well-defined off-shell behaviour and medium effects on the nuclear 
force when inserted into the many-body problem are natural consequences of meson exchange. Only a 
field-theoretical approach can account for these. 

Work along the field-theoretical line was taken up in the late 1960s by Lomon and collaborators 
[61, 62]. They evaluated the 2,rr-exchange Feynman diagrams for nucleons and represented their result 
in the framework of the relativistic three-dimensional reduction of the Bethe-Salpeter [63] equation 
suggested by Blankenbecler and Sugar [64]. In this way the ambiguities which beset the field-theoretical 
work of the 1950s were avoided, In subsequent work [62], the correlated 2"rr S-wave contribution was 
studied as well. A similar field-theoretical model, in which, however, the anti-particle contributions 
were suppressed, was developed by Nutt and Wilets [65]. Yet, neither group included processes 
involving the A-isobar in intermediate states. These are known to contribute substantially to the nuclear 
force [66]. Furthermore, nonresonant 3at- and 4'rr-exchange must be considered since their range is 
about that of to-exchange, the latter being included in all models. 

For a decade or so, our group in Bonn has pursued a program that includes all relevant diagrams in a 
field-theoretical model. In the early period [51-53], a relativistic three-dimensional equation was used 
together with the principle of minimal relativity [67]. The later treatment has been based on relativistic, 
time-ordered perturbation theory [68, 69] (see section 3 and appendices A and B for details). Step by 
step, all 2~r-exchange diagrams including those with virtual isobar excitation [70-74] and, finally, also 
the relevant diagrams of 3~r- and 4~-exchange [71, 75, 76] have been evaluated. In this paper, we give a 
summary of our model, results and conclusions. 

3. Basic features and assumptions of the model 

Our general scheme is to treat nucleons, isobars and mesons on an equal footing. Therefore, we start 
from a field-theoretical Hamiltonian H containing, as interaction part, nucleon-nucleon-meson and 
nucleon-isobar-meson vertices (but not a nucleon-nucleon potential). Antinucleons are not included 
from the beginning, mainly for the following reasons: It has been shown by Zuilhof and Tjon [77], in a 
covariant calculation based on (one-boson-exchange) Feynman diagrams and the Bethe-Salpeter 
equation [63], that the contribution from negative-energy states is quite small, provided that pseudovec- 
tor (gradient) coupling is used for the NN'tr vertex. This phenomenon is known as "pair suppression" 
since the early 1950s [57], for which the evidence was first seen in the empirical ~rN scattering length. 
Also, the pseudovector coupling is suggested as an effective coupling (Weinberg Lagrangian [78]) 
because of chiral invariance. Furthermore, according to quark-model arguments [79], the nucleon- 
antinucleon (Nlq) vertex may be considerably suppressed compared to the NN vertex. (In fact, in their 
subsequent work [80], the Utrecht group also omits negative-energy contributions. This leads to a 
considerable simplification.) Our assumption of pair suppression is not necessarily in contrast to recent 
work on the so-called Dirac approach to nuclear physics [81-83]. Though it has been shown that the 
success of this approach can be attributed to small anti-particle contributions [84, 85], which appear to 
be crucial for spin observables in N-nucleus scattering and nuclear matter saturation, these subtleties 
play no role in the NN problem. 
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In contrast to refs. [77, 80] we treat H in relativistic time-ordered (old-fashioned) perturbation theory 
[68, 69] (see also appendices A and B). This corresponds to standard many-body theory and, thus, leads 
to a well-defined transition from the two- to the many-body problem. Since one of our goals is to 
provide a meson exchange NN interaction suitable for application in nuclear structure, this procedure is 
more appropriate than that of refs. [77, 80]. 

The couplings for the various mesons in fig. l(a) are given in terms of their interaction Lagrangian 
densities by 

e N N p s  f p s  - 5 itl 

mps 
LeaNs = gs@¢~°s, 

4_~ - p. v v I J, Less,, = g,,~r'/,., ¢~°C + @o-.~@(a ~, - ,~ ~o,, ) ,  

(3.1) 

for pseudoscalar Or, rl), scalar (or, 8) and vector mesons (p, to), respectively, m is the nucleon and m= 
the meson mass; qs the nucleon and % the meson field operators. Note that for isospin I = 1 meson.4 % 
is to be replaced by ~'. ~p= with r i the usual Pauli matrices. Correspondingly, the vertices in fig. l(b) are 
described by 

LeNa: fNa,, @T@~, O~'~p~, + h.c. LeNa, i fNa" - S ~, , = ~ , = qS'y y ~ , r ~ s , ( a  ~p,  - a ~ p )  + h.c. (3.2) 
m,, m, ' 

where @~, is the field operator describing the A-isobar and T the isospin transition operator; h.c. stands 
for hermitian conjugate. For more details concerning the formalism see appendices A and B. 

A form factor F,, is applied to the vertices (fig. l(a), (b)). It is parametrized in the conventional form 

. ~ 2  2 " , n  a 

~" t'i. "~.~,.2 = \ A2~ + k 2 / (3.3) 

I I j 
~ 13 , / 

/ o. 

\ cL lY 13 \ 
\ 

(Q) 

I lJI'l BIB u P~ / p / 
/ct / /  13 

\\cL\ , 13' 13' 

(b) 

Fig. 1. Meson-nucleon-nucleon (a) and meson-nucleon-isobar (b) vertices. The single line denotes a nucleon, the double fine a A-isobar and the 
dashed line a meson. 
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with k the three-momentum transfer, A~ the so-called cutoff mass and n~ = 1 or 2 depending on the 
specific coupling. The form factor suppresses the contribution of high momenta, i.e. small distances. As 
discussed, the presence of such a form factor is dictated by the extended (quark) structure of the 
hadrons. The parameter A,, which governs the range of suppression, can be directly related to the 
hadron size. However, since the question of hadron size is still very much open, we will adjust A, tO fit 
the empirical NN data. The extended structure of hadrons also has the following obvious consequences: 
BeCause the meson mass exchanged between two nucleons determines the range of the corresponding 
contribution to the NN force (higher mass implying shorter ranges), one should restrict oneself to 
meson exchanges with a total exchanged mass below a certain value, typically on the ordei" of the cutoff 
mass A~. As it turns out that A~ must have values in the range 1.2-1.5 GeV in order to fit the data, it is 
reasonable and consistent to include all relevant exchanges up to a mass of about 1 GeV. Moreover, as 
the hadrons are not fundamental fields, the vertex functions (see appendices A and B) cannot be 
rigorously derived from an underlying interaction Lagrangian; they should, in fact, be considered as a 
semi-phenomenological ansatz. However, we stress that this ansatz contains only physical parameters 
(coupling constants and cutoff masses) and has the required transformation properties as prescribed by 
the spin and parity of the meson exchanged which, in turn, essentially determine (apart from slight 
off-shell ambiguities) the form of the vertex functions. 

The exact, energy-dependent meson propagators, which we apply here in the framework of 
time-ordered perturbation theory, differ from the static ones used in most conventional descriptions of 
the nuclear force, by characteristic meson retardation or recoil terms (see appendix B, eqs. (B.7) and 
(B.8)). These terms vanish on-shell but have an important off-shell effect: they tend to suppress higher 
momenta. Consequently, higher-order diagrams, in which large intermediate momenta are involved, 
are reduced. For example, all uncorrelated 2It-exchange diagrams (see section 5) are smaller by at least 
a factor two when meson retardation is taken into account. For that reason static models either 
drastically overestimate those diagrams or have to apply unrealistic form factors. Also, in our mode!, 
the strength of the tensor force due to one-pion exchange (OPE) is typically diminished compared to 
models using a static pion propagator, as for example phenomenological models like the Reid [86] 
potential. (Models which use the full Bethe-Salpeter equation [54, 77] keep these recoil effects also and 
thus have a small tensor force comparable to that of our model.) Since the amount of tensor force has a 
large impact on results in nuclear structure physics, it is crucial to keep these recoil terms. Whether this 
is done in a covariant way, as in the Bethe-Salpeter equation, or in time-ordered perturbation theory, 
as in our model, is essentially immaterial. 

Following the guidelines stated in this chapter, we present and discuss, in the next four sections, the 
various diagrams which we include in our model for the energy-dependent NN potential V(E). Their 
analytic structure and evaluation has already been described extensively in previous articles [70-76]. We 
give the starting expressions in appendix B and refer to the references for further details. We introduce 
the various contributions systematically by going from the lowest order of the meson-exchange process 
to those of multi-pion exchange. In this way we demonstrate clearly the relevance and necessity of the 
separate contributions. 

4. One-meson-exchange contributions 

We start with the well-established one-pion and one-omega exchange, see fig. 2. (The p-meson, a 
2~r-resonance, is included in the next section which deals with the 2~-exchange model.) The pion 
provides the long-range (essentially tensor) force; the omega (a 3~r-resonance with a mass of 783 MeV) 
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Fig. 2. Single-meson exchanges included in our model. 

is mainly responsible for the short-range repulsion and the spin-orbit interaction*. The parameters 
(coupling constants, cutoff masses) will be fixed and discussed later. We include also the scalar, 
isovector S-meson (4~-resonance, mass 983 MeV) which is needed for a consistent description of both 
S-wave phase shifts. It is a very small contribution. 

We leave out -11(549)- and rl'(958)-exchange. Due to the pseudoscalar nature of their coupling, the 
contribution of these particles (which are very heavy compared to the pseudoscalar pion) is small. In 
addition, their coupling constants are small, a fact which is predicted by the quark model** and 
confirmed in phenomenological studies analyzing NN scattering with forward dispersion relations [87]. 

Also, we do not include some mesons with a mass around or slightly below 1 GeV, namely the 
+(1020) and S*(975). These mesons, providing in any case rather short-ranged exchanges, have a 
considerable s~-content (with s denoting the strange quark) and, therefore, their coupling to the nucleon 
is suppressed according to the Zweig rule [88]. 

There are many mesons above 1 GeV, particularly in the area of 1200-1300 MeV, e.g., the f(1274) or 
the At(1275 ) [89]. For reasons of chiral invariance the At-meson, which is the chiral partner of the 
p-meson, has been considered by some authors [90]. However, there are several reasons why we leave 
out all contributions arising from the exchange of mesons heavier than 1 GeV. First, their (short-ranged) 
contribution is masked to a considerable extent by the strong short-range repulsion originating from 
to-exchange. Second, as discussed previously, the cutoff masses, which determine the range of the form 
factors at the meson-nucleon vertices, will turn out to be 1.2 to 1.5 GeV. Obviously, it does not make 
sense to take meson exchange seriously in a region in which modifications due to the extended structure 
of the hadrons are applied. 

In summary, the simple exchanges in fig. 2, essentially ~ and to, already explain important features of 
the two-nucleon force: the (long-ranged) tensor force and the short-ranged repulsion, together with a 
sizable spin-orbit contribution. But one important property of the nuclear force is still missing, namely 
the intermediate-range attraction. On the one-boson-exchange (OBE) level, such a contribution could 
be generated by a scalar-isoscalar meson with a mass of 500-600 MeV, which, unfortunately, does not 
exist [89]. The intermediate-range attraction is provided by 2~-exchange contributions, which are 
introduced and discussed in the next section. 

5. The 2~-exchange model 

Our model for the 2~r-exchange contribution to the NN scattering T-matrix is shown in fig. 3. The 
essential features of the model are that it contains the contributions from nucleon resonances (isobars) 

* For a thorough introduction and a more detailed discussion of the various boson-exchange contributions and their role in NN, the interested 
reader is referred to ref. [28]. 

**See appendix B to chapter X of ref. [57]. 
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2~ 

+ ~. + + ~. 

Fig. 3. Our model for the 2~r-exchange contribution. The second line from the bottom represents the correlated S-wave contribution taken from ref. 
[91]. Line notation as in fig. 1. 

as well as direct ~ r  interaction, phenomena which are well known from empirical ~N scattering and 
other related processes. 

The lowest-lying so-called A-resonance (spin J = 3/2, isospin I = 3/2) with a mass of 1232 MeV [89] is 
of particular importance. There are, of course, analogous processes involving higher-mass ~N- 
resonances, like e.g. the Pu(1470), the Roper, and the Fts(1688) [89]. Because it has been shown by 
several authors that their contributions are rather small [91-93], we restrict ourselves to the A(17.32) in 
our model, especially since we stay below the pion production threshold. Note that we view the 
A-isobar not as an empirical P33 resonance (built up by Chew-Low-type diagrams in ~rN scattering) but 
as a genuine particle in the quark model sense. The main motivation for this point of view is that we 
want (and have) to include Crossed-box diagrams (without running the risk of double counting) and 
corresponding processes involving ,~- and p-exchange (see next section). Below pion production 
threshold, part of the dressing of the A can be conveniently taken into account by using the empirical 
A-mass. 

The six upper diagrams in fig. 3 represent uncorrelated 2~r-exchange. The various crossed-box 
diagrams shown were left out of most field-theoretical models of the past, simply because they are 
difficult to evaluate. However, they must be"taken into account for two essential reasons: first, they are 
nonnegligible (see fig. 8, below), and, second, they provide an almost isoscalar character for the 
2~r-exchange contribution (at least in higher angular momentum particle waves), which is suggested by 
results from dispersion theory [94]. 

In addition, we have to consider corresponding correlated 2~-exchange processes since it is well 
known that a strong interaction between two pions does exist. If the two pions are in a P-wave state, 
this gives rise to the p-meson. On the other hand, the ~r~ S-wave interaction does not lead to a 
resonance. However, Durso et al. [91] have shown that the correlated ~r~r S-wave contribution (second 
line from the bottom in fig. 3) can be well approximated by the exchange of a scalar-isoscalar boson 
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Fig. 4. Correlated 2~T S-wave contributions building up ¢'-exchang¢. 
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with a broad mass distribution which we denote by tr' (fig. 4). According to ref. [91], this correlated 
2~r-exchange contribution provides about 2/3 of the total 2~r-exchange, a result which we confirm later. 
Note that in ref. [91] the "rr~r S-wave interaction contained in the diagrams of fig. 4 has been determined 
from the empirical ~r~r S-wave phase shifts. Thus, or' is introduced in a well-defined way in contrast to 
the CroB E typically used in one-boson-exchange models [49-54]. (In ref. [50], (rob E has been introduced 
with a width derived from ~-scattering data; however, the strength of the coupling has been taken as a 
free parameter to be adjusted to the empirical NN data). 

This model for the 2~-exchange contribution (with gZ.J4~-=14.4, 2 fNa,,/47r = 0.224, m, = 
138.03MeV; gZp/47r=0.55, fp/gp=6.1, mp= 769MeV, Fp= 154MeV; g],/azr= 10, m~, =662.5MeV, 
F~,, =524.5MeV), supplemented by single "tr- and ~-exchange (g2J4~'=5.7), provides a realistic 
description of the long- and intermediate,range part of the NN interaction. This is confirmed in fig. 5, 
which shows higher angular momentum NN-scattering phase shifts (total angular momentum J = 4-6) 
predicted by our model in comparison with those from empirical phase shift analyses [95, 96]*. The 
theoretical phase shifts have been obtained from the Born approximation (taking the lowest-order term 
only in the R-matrix eq. (C.2)), which is an extremely good approximation for these high angula r 
momentum partial waves. (Note that the second iteration of the one-pion-exchange (OPE) is included 

* Throughout this work we use "bar" phase shifts (see ref. [97] and appendix C.2); furthermore, we will always compare our predictions with 
the analyses of refs. [95] and [96] using the notation introduced in fig. 5. 
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in the 2~r-exchange model). As mentioned earlier, the it'-parameters are consistent with ref. [91]. The 
to-coupling has been taken from phenomenological studies by Hamilton and Oades [98] using fixed-s 
dispersion relations; it is in agreement with SU(3) arguments from the naive quark model [57]. We 
stress that since the results in fig. 5 are sensitive only to the long-range part of the NN amplitude, they 
are completely independent of form factor parameters. In fact, in these calculations form factors have 
been used only for the evaluation of the fourth-order box diagrams describing the uncorrelated 
2~r-exchange; the results do not change even when the relevant cutoff masses are varied over a wide 
range. 

As expected, OPE is dominant in almost all partial waves shown. In some s t a t e s  (3F4,  3H6) , 
however, the 2~r-exchange contribution is quite appreciable; to-exchange is negligibly small throughout, 
apart from the 3F 4 wave, see fig. 8 below. For convenience we give the precise values for the theoretical 
phase shifts in table 1. These might be of use in future phase shift analyses and for other purposes. 

An alternative way to derive the 2at-exchange contribution to the NN interaction is by means of 
dispersion theory, in which empirical ~rN- and ~r~r-scattering information is used in order to evaluate the 
amplitude NN + 2,rr [56-60]. We perform a quantitative comparison with the results from this latter 
approach. For this purpose, we consider sufficiently high angular momentum phase shifts of NN 
scattering such that there is no cutoff dependence in the results: neither due to form factors in our 
model nor due to cutting off dispersion integrals, as done in refs. [56-60]. Figure 6 demonstrates an 
obvious qualitative agreement between both approaches. (The discrepancies between the two disper- 
sion-theoretical results in fig. 6 may be due to differences in the ~rN input [100], to uncertainties in the 
cutoff of the dispersion integrals or ambiguities in the analytic continuation of the ~rN amplitude). 

As explained, the correlated 2~-exchange in ~r'rr S-wave has been included by the exchange of a 
scalar boson with a broad mass distribution derived in the work of ref. [91]. In fact, this contribution 
can be even further approximated by a zero-width scalar exchange. This is demonstrated in fig. 7. Of 

Table I 
NN bar phase shifts' (in degrees) for higher angular momentum states predicted by the model explained in this section with the meson parameters 

given in the text 

E,~t, (MeV) 25 50 100 142 150 200 210 300 325 

IG, 0.041 0.158 0.441 0.685 0.733 1.038 1.101 1.719 1.907 
3G 4 0.179 0.759 2.275 3.559 3.795 5.200 5.466 7.628 8.160 
3F 4 0.022 0.120 0.496 0.932 1.023 1.635 1.764 2.968 3.308 
64 -0.049 -0.199 -0.552 -0.822 -0.869 -1.131 -1.178 -1.512 -1.582 
3H, 0.004 0.026 0.113 0.209 0.229 0.357 0.384 0.626 0.693 
IH s -0.033 -0.172 -0.558 -0.864 -0.917 -1.209 -1.259 -1.619 -1.694 
3H s -0.015 -0.086 -0.311 -0.512 -0.549 -0.762 -0.800 -1.084 -1.143 
3G s -0.009 -0.052 -0.185 -0.286 -0.302 -0.373 -0.381 -0.374 -0.348 
e s 0.039 0.215 0.756 1.236 1.325 1.849 1.948 2,736 2.927 
31 s -0.003 -0.024 -0.131 -0.266" -0.295 -0.491 -0.533 -0.921 -1.029 
I I 6 0.003 0.022 0.095 0.168 0.182 0.270 0.287 0.443 0.486 
316 0.012 0.095 0.445 0.825 0.900 1.380 1.476 2.309 2.528 
aH 6 0.001 0.007 0.045 0.098 0.110 0.197 0.216 0.419 0.482 
86 -0.004 -0.027 -0.120 -0.215 -0.234 -0.347 -0.369 -0~551 -0.596 
SK 6 0.000 0.003 0.018 0.040 0.045 0.079 0.086 0.160 0,182 
3K~ -0.001 -0.012 -0.069 -0.139 -0.153 -0.245 -0.264 -0.425 -0,466 
317 -0.001 -0,007 -0.043 -0.090 -0.099 -0.164 -0,177 -0.287 -0,315 
3K s 0.000 0.001 0.007 0.018 0.020 0.040 0.044 0.094 0.110 

• For the definition of the term bar phase shift see ref. [97] and appendix C.2. 
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course, the parameters of this "sharp" it'-exchange have to be readjusted, namely g],/47r = 5.7, 
m,,, = 550 MeV. In this sense, the mass distribution plays only a small and unimportant role. Note that 
the width of the p can be completely neglected, i.e. a sharp p can be used without changing the 
parameters. In the calculations of the following chapters, we use the zero-width prescription for both (r' 
and p. 

In the traditional OBE model, the correlated and uncorrelated 2~r-exchange, i.e. all the diagrams of 
fig. 3 (apart from the iterative process with NN intermediate states and the one-rho exchange), are 
effectively described by the exchange of a (sharp or broad) (roe E with suitably adjusted parameters. As 
seen also in fig. 7, this simple and convenient prescription is quite adequate for high partial waves. 
Here, typical values (g2,oBE/4~r= 9.2, m,OB~ =550MeV) have been used. A comparison with the 
parameters of (the sharp) ~r' shows that roughly 2/3 of the intermediate-range attraction is provided by 
correlated 2~r-exchange, the rest being due to the uncorrelated processes. This is also apparent from fig. 
8, in which, for the example of the 3F4-wave , the effect of the separate contributions is demonstrated. 
Furthermore, it is evident from that figure that the NA contributions play the most prominent role 
among the uncorrelated processes. Noniterative diagrams, i.e. essentially crossed-box diagrams, are 
clearly as important as the iterative ones. 
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denotes the iterative part. 
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6. The ¢rp contribution 

In the last section we have successfully checked our 2~r-exchange model in high angular momentum 
partial waves, which are sensitive to the long and intermediate range of the nuclear force only. We now 
proceed to states of lower angular momentum. This will clearly exhibit the need for the inclusion of 
additional (short-ranged) processes. A correct determination of low angular momentum NN scattering 
phase shifts requires going beyond Born approximation, i.e. iterating the potential to all orders. 
Therefore, in all following calculations we solve the scattering equation (C.2) and, consequently, leave 
out iterative contributions in the kernel (the "potential") since these are now generated by the 
equation. Also, from now on, we will have to use form factors at all vertices because the ranges become 
shorter and integrations over large intermediate momenta are involved. 

From the (incomplete) model developed thus far (which consists of one-meson and 2rr-exchange 
only, but provides a quantitative description of the high partial wave phase shifts) we obtain now, for 
low angular momentum partial waves, the following result. The 2,rr-exchange contribution appears, in 
general, too attractive and a consistent and quantitative description of all phase shifts can never be 
reached-for any possible choice of the cutoff parameters A,~. This is no surprise. Various meson- 
exchange contributions which should be taken into account according to the rules of the game stated in 
section 3 have been neglected thus far. 

From one-boson exchange it is known that the ~r- and p-mesons play the role of opponents because 
their tensor forces have opposite sign. It is therefore tempting to include next the qr and p 
two-boson-exchange diagrams expecting them to counterbalance corresponding 2qr contributions. 
Figure 9 displays the processes to be considered in analogy to the diagrams of uncorrelated 2at- 
exchange. 

Anticipating the results to be shown and discussed below, the "rrp contribution reduces the 
over-attraction, and, at the same time, improves considerably the consistency of the simultaneous 
description of all low angular momentum phase shifts (particularly the P-waves). Still, in addition, the 
to-coupling constant has to be increased in order to reach a quantitative description of the data. The 
resulting parameters of this model, which consists of one-meson and 2at- plus ~p-exchange, are given in 
appendix B.3, table 9. Note that for both the 'rrNA- and pNA-coupling we take values derived from the 
"rrNN- and pNN-couplings through relations based on quark flavour SU(3) (see section 8.2.1). The 

~pNN 

~pNA 

-n-p~ 

Fig. 9. ~p contributions to the lqN interaction. 
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model provides a satisfactory description of the NN scattering phase shifts in all partial wave states and 
for the deuteron and low-energy parameters as well. Due to their short range, the additional ~rp 
contributions together with the increased to-exchange have a negligible influence on high partial wave 
phase shifts and, thus, do not destroy the quality of the description reached in the last section with the 
one-meson plus 2~r-exchange model. 

The above results are shown and explained in detail in fig. 10, for some important partial waves. 
First, the figure displays the good quality of the description reached with the present model. Second, it 
demonstrates the compelling need for the inclusion of ~tp contributions. If they are omitted, taking in a 
first step the _~-coupling strength* to be the same as that employed in the former model for high partial 
waves, i.e. g2J4~r = 5.7, the over-attraction in all partial waves is clearly demonstrated (curve "2"rr 
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Fig. 10. Some low angular momentum phase shifts, demonstrating the need for ~rp contributions and increased to strength. The solid line shows the 
result for the model discussed in_section 6 with the parameters given in appendix B, table 9. For tile long-dashed curve ("21r 1.5") the 'np 
contributions are omitted, and g214rr = 5.7, this to-coupling being used in all nonsolid curves (see the text for further explanations). For the 
short-dashed curve ("21r 0.6") Ass,, and Aw,,, are changed to 0.6 GeV. The dashed-dotted curve is obtained when ~p-exchange (fig. 9) is added, 
choosing ANn " = Ann , = 0.95 GeV. 

* In the presence of a form factor, we define the coupling strength ~/47r  to be a 2 (gJ47r ) .F ,  (k2=0) since this is the quantity which 
characterizes the strength of the contribution in lower partial waves. In other words, g2.147r = 5.7 provides roughly tile same strength as g2,14~r = 5.7 

for a model without a form factor. For higher partial waves, however, it is the coupling constant which governs the behaviour. Since g2J4~r = 5.7 
implies (for the specific form factor used) g2,14~r ~ 10, the strength in higher partial waves is increased. However, this is of no practical significance 
since to-exchange, due to its short-range nature, has little influence on higher partial waves. 
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1.5"). As the contributions are now sensitive to the cutoff parameters, one may argue that the 
description,might be considerably improved by a better choice of the cutoff masses. It turns out that this 
is not the case. If we reduce both ANN,, and ANa,, to 0.6 GeV (curve "2at 0.6" in fig. 10), the overall 
attraction is indeed reduced, as expected. However, a consistent description of all P-phases cannot be 
achieved. The 3P 0 phases are already too small whereas the 3P t phase shifts are still far too large. Also, 
it is obviously not possible to improve the ~P1 phase shifts. In a next step, we add ,fro-exchange, keeping 
to-exchange the same as before and choosing ANN,, = ANa,~ = 0.95 GeV in order to get a quantitative 
description of the IS 0 phase shifts. The curve "~p 0.95" then demonstrates the basic feature of 
,rrp-exchange. Although the results do not yet fully agree with the empirical data,, they have improved 
considerably since now, with a correct description of the XS0-wave, all the P-waves are described 
consistently, though slightly too high. In a final step, we have to increase the strength of to-exchange (to 
roughly double its value) in order to achieve a simultaneous lowering of the P-waves. Note that in spite 
of the fact that to- and ,#p-exchange provide repulsion in general, they differ considerably in detail. For 
example, as seen clearly in fig. 11 (see also ref. [76]), "rrp-exchange is strongly repulsive in 3p~, but 
slightly attractive in 3P o. Speaking in terms of t-channel quantum numbers, the reason for this is that 
not only the 1-, but also other channels, e.g. the 0--channel, obviously provide important contributions 
to ,rrp-exchange; to-exchange is about equally repulsive in all states of equal angular momentum. 
Summarizing, let us stress again our important finding: both effects, ~rp-exchange and an increased 
to-strength, are needed to get a quantitative description of the NN scattering data. 

The fact that the ~rp contribution is of relevance was pointed out previously by Durso et al. [94]. 
However, those authors suggested the "trp contribution as a substitute for part of the to contribution, 
which is always rather large in OBE models (in fact, about the same as in the present model) when 
compared to the SU(3) prediction*. Obviously, this suggestion is not realistic for two reasons. First, as 
we have seen above, the "rrp contribution does not act precisely like one-omega exchange; in fact, it 
varies tremendously from state to state, which is not true for the to-exchange or the short-range 
repulsion in the NN interaction in general. Second, the over-attraction of the 2~-exchange in low partial 
waves is such that, in addition to a rather large to-coupling, further repulsion is needed. Therefore, the 
role of the rrp contribution is to counterbalance the 2~r-exchange, and not to partially provide the basic 
short-range repulsion of the NN interaction. The deeper reason for the intimate counterplay between 
the 2~r and ~p process is probably that they provide also nonnegligible contributions in t-channel 
quantum numbers other than 0 ÷ or 1- (which are usually emphasized). These other contributions are 
also needed for an accurate description of the NN data; however, their amount (due to partial 
cancellations) assumes a realistic size only in the combination 2~r plus ~rp. 

At this stage of the development of our model, it is instructive to readdress the question of what the 
fictitious scalar-isoscalar troB E in former OBE models stood for. We saw in the last section that 
~rOSE-exchange represents a good effective description of the total (uncorrelated plus correlated S-wave) 
2-#-exchange contribution. However, this is true only for higher partial waves (corresponding to long 
ranges). For lower partial waves (rob E should, in fact, replace the sum of 2~r- and ~p-exchange since the 
model of this section, i.e. one-meson-exchange plus 2~- together with 'rrp-exchange, has an to-coupling 
strength comparable to OBE models. This is confirmed in fig. 11: ~roBE-exchange, with precisely the 
same parameters as in the last section**, now in general underestimates the 2~r-exchange considerably, 
but reasonably accounts for the sum of 2'rr and "rr0 contributions. This is not in contradiction with the 

* See section 8.2.1 and ref. [57], appendix B to Chapter X. 

** g2,onE/4~" = 9.2; m,oa6 = 550 MeV; A,,oa ~ = 2 GeV. 



22 R. Machleidt et al., The Bonn meson-exchange model for d~e nucleon-nucleon interaction 

O~ 

F-- 
h 

I 

-4 

1 
1 i i i i i I i i 

2o, - IS 0 

i21 \ 

--. .  ~ ' ~ " : " ~ "  ~ ~'-~. 9 

. . . . . . . . . . .  ONE 

-12 

0 

OJ 
-O 

-10 
E- 
LL 

~I-} -20 
I 

Ld 
U3 
"< -30 "l- 
Q- 

- 4 0  

I I I I I I I I 

too 2oo 30o 400 
L A B .  ENERGY (HEY} 

i i i i i i  

1P 1 

2rr 

2n+.9 

• OME 
I I l I I I l I 

leo 200 3oo 400 
L A B .  ENERGY (HEY} 

mm-e 
I 

l a . I  

~ - 2 4  

Q..  

- 4 0  

i i i i i i i  

3P o 

° " ' . , . , .  

• ONE 

I I I I I I I I 
too 200 "~oo 400 

L A B .  ENERGY (MeV) 

t61 
ol  

1:} 

0~ 
I-- 
b- 

~I_} - 1 6  

~ - 3 2  

- 4 8  

I i I I I i I I 

3P 1 

- 2 n '  

• ONE 
I I I I I I I l 

too 200 ":,oo 400 
L A B .  ENERGY IMeV}  

i i i I I i i i | I I i i i I I I 

o~ too 3 ~  1 -~ o t @  3 ~ I  ' 

U1 I " " .  " ~ "  O O B (  
-2o "< -3o I-.- - "T" " .  ..d... 

Q.. r", " ,  

60 1 . . . .  = ' ' ' 1 -  n . ¢  I 40 I I I I I " i ' "  qME I 
0 1 0 0  20Q 300 400 O I00 200 300 400 

LAB.  ENERGY (MeV l  LAB.  ENERGY (MeV)  

Fig. 11. The approximation of (2~r + Irp)-exchange by a troBE-boson in low partial waves. The dotted line (OME) consists of the one-meson- 
exchange contributions of  ~r, p, to and 8. The dashed line is obtained by adding the 2~r-exchange contribution to OME. The solid curve denotes the 
complete model of section 6 (i.e. it is the same as the solid line in fig. 10), with the parameters given in appendix B, table 9. The dashed-dotted 
curve is obtained when trose-exehange (g2,oBE/4~" =9.2, m,oBe = 550 MeV, A,oBe = 2. GeV) is added to OME. All curves contain all possible 
iterations by the scattering equation. 

result found in the last section. For high partial waves, the "rrp contribution is simply negligible because 
of its short range. Finally, we would like to point out that although CroBE-exchange obviously gives a 
fair account of the physics of 2"tr + qrp exchange there are some deficiencies connected with this simple 
picture. First, the quality of the fit is, in fact, inferior to that of the full model. Second, probably more 
important, Pauli-blocking and dispersive effects in the uncorrelated exchanges, which should occur 
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when such an interaction is applied to the many-body system, cannot be taken into account within the 
OBE model. In addition, there are many more important subtleties in nuclear physics which cannot be 
treated in the OBE approximation (see the Introduction). 

7. Further 3xt and 4xr contributions 

In the last chapter we have seen that the ~rp diagrams are an essential contribution to the NN 
interaction. This shows that it is important to consider not only resonant 3~r-exchange (like the to) but 
also other 3~r contributions. 

Now, we should realize that there are more 3,rr-exchange processes, of comparable range. For 
example, a pion can be combined with other correlated as well as With uncorrelated 2"rr-exchange. 
Guided by our rule that diagrams up to an exchanged mass of about 1 GeV should be relevant, we have 
to consider such processes, too. Again, however, we should take advantage of the counter structure 
between ~r- and p-exchange and, in addition, between correlated 'rr~r S-wave contributions (providing 
attraction) and (repulsive) to-exchange. The combined consideration of these phenomena is known to 
lead to strong cancellations, which should persist in higher orders. (In fact, as we shall see below, these 
cancellations become even stronger in higher orders.) 

Of course, it would be a horrible task to evaluate all of the relevant diagrams explicitly. In fact, we 
do not believe this to be worth the effort, since their combined effect will turn out to be quite small. 
Fortunately, we can obtain a reliable estimate of part of these contributions by making use of a fact we 
found in the last section; namely, to a reasonable extent, ~roBE-exchange effectively describes 2'rr-(apart 
from p) plus "rrp-exchange. As seen from fig. 12, it is then tempting to approximate the diagrams 
between the solid and the dashed line*, representing part of additional 3'rr and 4~ contributions, by 
noniterative xrto- and ~rOroBz-exchange. (Note that the parameters of Cro8 E are fixed and taken from the 
earlier consideration.) 

It turns out that the individual contributions (i.e. ~rto- resp. ~reoBE-exchange ) are already quite small. 
Moreover, they cancel each other to an appreciable extent. However, there is one remarkable feature: 
a noticeable piece of the intermediate-range tensor force, arising from the contributions represented by 
~rcroBE-exchange, survives the cancellation due to ~rto-exchange. As a consequence, the addition of 
these contributions to the model of the last section leads, after small readjustments of the parameters, 
to more consistent values for the ~NN and ~rNA cutoff masses; namely 1.3 and 1.2 GeV as compared to 
1.5 and i.1 GeV before. The quantitative description of the data is also further improved. Therefore we 
include these contributioris in our final model, although we are aware of the fact that (i) due to the 
presence of CroB E, the model loses some of its beauty** and (ii) because of technical complexities, 
processes of comparable range (and probably of a comparable magnitude which, however, is quite 
small) have to be omitted. 

The resulting phase shifts and parameter values will be given and discussed in detail in the next 
section. Here, we demonstrate some features which are relevant to the present discussion. Figures 
13(a),(b) show the separate contributions to the final result for the 3P 2 phase shifts. As stated before, 
"rro%B~. and ,rrco are individually quite small and cancel each other almost completely (curve "ALL"). 

* Note that our model developed so far consists of the diagrams above and to the left of the dashed line. 
** We stress again that we do not view ere8 ~ as a physical particle, but only as a convenient tool to simplify the treatment of higher-order 

processes to the right of and below the dashed line of fig. 12. 
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Thus, there is obviously a strong convergence of the diagrammatic expansion, provided only that the 
diagrams are grouped in a suitable way as dictated by the physics of the NN problem and indicated in 
fig. 12. Figure 13 also demonstrates once again the comparable importance of NN, NA and AA 
contributions, for 2~- as well as ,rrp-exchange. 

Figure 14 (curve "ALL") shows the net effect of combined ('rrcroB e + ~rto)-exchange on the e 1 mixing 
parameter, indicating a sizable increase in the amount of intermediate-range tensor force. 

8. Results for the full model and discussion 

In this section we present and discuss the results predicted by our final model which we will 
subsequently call the full model. It has been defined in the last section and fig. 12; the meson 
parameters are given in table 4 below and discussed later. 

8.1. Predictions for the NN data 

8.1.1. NN scattering 
We start with the NN scattering* phase shifts shown in fig. 15 and tabulated for several energies in 

table 2. Our predictions for the phase Shifts are in excellent agreement with the latest phase shift 

* We should note that throughout the present work we assume charge independence and perform our quantitative fits to the neutron-proton 
data, for T = 0 as well as T= 1 states. Therefore, we use the average of the proton and neutron mass for the nucleon and an average pion mass (see 
table 4 below). The p-meson and the A-isobar mass are treated equivalently. Yet it is worth mentioning that our model does indeed provide a sound 
basis for a reliable evaluation of the charge independence violation of the two-nucleon interaction due to the charge dependence of the parameters 
(in particular, the mass difference between the charge states of nucleons, deltas and mesons). Though we are not concerned with this aspect in this 
paper, we note that, in a detailed calculation published elsewhere [101], it has been shown that the charge-independence violating difference 
between the proton-proton (without Coulomb distortion) and the neutron-proton scattering length can be explained, on the basis of our model, by 
the mass differences between the charge states of the nucleon and the pion. 
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analyses by Arndt and collaborators [95] and by Bugg and coworkers [96]. The quality of our fit is 
comparable or even better than that provided by the best known (semi-) phenomenological potentials 
[86, 49, 50, 60] in spite of the very few (physical) parameters in our model. All meson-theoretical 
potentials known to us, see e.g. refs. [49-54] and [60], have a problem with the 3D~, or 393 phase shifts, 
which for higher energies are too large as predicted in those models. The fact that these phase shifts are 
described correctly by our model can be traced to the inclusion of the 'rrp diagrams. 
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Table 2 
NN bar phase shifts (in degrees) predicted by our full model 

31 

Et, b (MeV) 25 50 100 142 150 200 210 300 325 

tS o 50.030 39.149 24.358 15.248 13.724 5.304 3.809 -7.622 -10.222 
3P o 9.573 12.788 10.882 6.854 6.015 0.656 -0.413 -9.662 --12.086 
'PI -6.902 -10.484 -15.110 -18.304 -18.884 -22.407 -25.096 -29.170 -30.843 
3P 1 -5.174 -8.526 -13.378 -16.952 -17.617 -21.729 -22.546 -29.871 -31.903 
SS, 80.301 62.185 42.268 31.386 29.637 20.305 18.704 7.058 4.537 
e~ 1.820 2.082 2.292 2.499 2.542 2.818 2.869 3.190 3.054 
3D I -3.031 -6.980 -13.252 -17.040 -17.636 -20.621 -21.076 -23.425 -23.855 
ID 2 0.722 1.723 3.763 5.343 5.615 7.042 7.266 8.322 8.351 
~D. 3.883 9.268 17.411 21.216 21.678 23.091 23.121 20.836 19.595 
3P 2 2.540 5.886 11.137 13.858 14.240 15.925 16.150 17.217 17.334 
~2 -0.849 -1.774 -2.740 -2.959 -2.965 -2.842 -2.795 -2.232 -2.056 
3F~ 0.108 0.345 0.811 1.100 1.141 1.279 1.280 0.874 0.632 
tF 3 -0.445 -1.201 -2.392 -3.101 -3.217 -3.878 -4.003 -5.149 -5.499 
~F s -0.239 -0.715 -1.581 -2.127 -2.215 -2.677 -2.755 -3.335 -3.475 
SD 3 -0.015 0.088 0.793 1.607 1.764 -2.653 2.805 3.648 3.706 
e 3 0.582 1.696 3.682 4.915 5.109 6.080 6.229 7.081 7.192 
3G s -0.056 -0.278 -1.024 -1.788 -1.939 -2.873 -3.054 -4.518 -4.856 

A remark concerning the e 1 mixing parameter is in place. It may appear that our model predicts the 
e I too high for low energies and too low for high energies. However, there is doubt if the results for e 1 
from the phase-shift analyses can be trusted for E~a b ~ 100 MeV. In that energy range, most realistic 
potentials predict e 1 above the analysis. Note also that within a phase shift analysis the ~Pl is closely 
related to the e I. Notably, the 1P 1 result from the phase shift analysis for Eta b ~ 100 MeV disagrees with 
all theoretical predictions. Most likely, this is not just an accident. In the intermediate energy range 
(E~ b ~ 140-210 MeV) there are obviously discrepancies between the two phase shift analyses with 
which we compare our results. We find precise agreement with the analysis of the BASQUE group 
(Bugg and coworkers [96]). At higher energies (Et~ b ~> 250 MeV), several points have to be kept in 
mind. First, the nuclear force at these energies is of no relevance to conventional nuclear structure 
calculations*. Second, one enters the region in which pion production starts and therefore the 
description of the NN interaction by the present model becomes inadequate. Third, the results for e 1 
produced by phase shift analyses have been subject to drastic changes over the past 20 years and the 
error bars given by the analyses are probably greatly underestimated. 

Furthermore, when comparing different theoretical results one has to be aware of the following 
"technical" point: though in theory the e 1 is in principle related to the tensor force, it also depends 
strongly on the 3S t and 3D 1 phase shifts; namely we have 

1 1 1 
tg 2 ~  1 = 2RD,sI(Rs, S - R D , D ) ,  ( 8 . 1 )  

1 with RL, L denoting the relevant R-matrix elements (see appendix C.3, eq. (C.25)). For example, an 
increase in the 3S l phase shift will lower e t even when the R~. s matrix element, which depends on the 
strength of the tensor force, is kept unchanged. Our value for the 3S 1 phase shift at E~, b = 325 MeV is 
4.5*. This is in excellent agreement with the energy-dependent analysis of Arndt [95]. Furthermore, an 
accurate fit of the phase shifts for E~a b = 100-210 MeV leads automatically to our value at 325 MeV by 

* Note that the Fermi momentum at nuclear matter density is equivalent to E,= b == 125 MeV, 



32 R. Machleidt et al., The Bonn meson-ca'change n, odel for the nucleon-nucleon hzteraction 

extrapolation. Note, however, that most existing NN potentials predict for the 3S~ phase shift at 
325 MeV a value =0 ° (in disagreement with modern data). A lowering of the 3S t phase shift by ~4 ° 
results in an increase of e t by about 2 ° (without change of tensor force). This "renormalizing" effect of 
3S t on e t should be kept in mind when predictions for the mixing parameter by different theoretical 
models are compared. 

Finally, experimentally one measures NN observables (and not phase shifts). Therefore the real test 
of the quality of an NN interaction is the comparison with these data. For our model this is done in fig. 
16. It is seen that for laboratory energies ranging from 25 MeV up to 325 Me¥ an excellent description 
of the data is achieved including those spin observables the e t is very sensitive to. 

8.1.2. The deuteron and the low-energy scattering parameters 
In table 3 the deuteron and low-energy parameters are given and compared with experimental 

values. First, let us draw the attention to the rather small value for the D-state probability of the 
deuteron, PD, a characteristic feature of our model. The PD is a measure of the strength of the tensor 
force. PD = 4.25%, which is predicted by our model, indicates a weak tensor force. As this part of the 
nuclear force is of utmost relevance in nuclear structure (see section 10), we like to discuss the 
theoretical foundation of our prediction in more detail here. Our low PD can be explained in a 
systematic way as follows: let us start by considering an (unrealistic) model, which would result in the 
maximal tensor force possible within the meson-exchange picture. Such a model would assume 
point-like hadrons (and consequently a point-like NN~r vertex, i.e. no vertex form factor) and, 
furthermore, it would not include the p-meson. The result would be PD = 6.6%. Not surprisingly, the 
Reid soft-core potential [86] predicts PD = 6.5%. The introduction of the p (but still keeping the NN~r 
vertex almost point-like) reduces PD to 5.8% (see e.g. HM1 [52], which uses A~ = 2.5 GeV correspond- 
ing to a quite small nucleon radius of R = 0.25 fm, see section 8.2.2). Remarkably, most (semi-) 
phenomenological potentials commonly in use predict a PD of about that value (e.g. Sprung [49]: 5.9%; 
Paris [60]: 5.8%; Argonne [113]: 6.1%; Nijmegen [50]: 5.4% and 6.4%). However, to emphasize the 
important physical point implied: if one believes in a nuclear potential with Po ~ 5.5-6.5% (and uses 
it), then (at least in the framework of meson theory) one has to believe in extremely small nucleons and 
pions. However, nowadays with the growing empirical and theoretical evidence for a definite substruc- 
ture of hadrons, this is hard to believe. Also, it has been impossible to create nonnegligible tensor force 
by other processes than meson exchange. The introduction of a NN~ vertex form factor, with a cutoff 
mass of 1.3 GeV (equivalent to a nucleon radius R =0.5 fm) results in PD =4.5% (see the OBEP 
presented in section 9). Finally taking into account meson retardation further reduces PD below 4% 
which is partly compensated by contributions from 3~r- and 4~-exchange providing moderate inter- 
mediate range tensor force (see section 7). This explains our final result of PD = 4.25%. 

In fact, since a decade there are empirical indications from the forward deuteron photodisintegration 
[114] and from electron-deuteron scattering [115] that the PD is low (=4.5%). 

In spite of the small PD, the quadrupole moment, Qd, is rather large and is reasonably close to the 
empirical value*. Of course, one should not expect exact agreement since meson-exchange-current 
corrections are known to contribute an additional amount of about 0.005-0.014 fm 2 [116] to Qd. In fact, 
in our model the meson-exchange-current contributions are well-defined and it would therefore be a 
challenging task for the future to consistently evaluate them. This applies to the quadrupole moment 

* The ability to combine a small PD with a large Od is a characteristic feature of an energy-dependent potential; this was already observed with 
the HM2 potential [53]. 
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2 0 0  

2 0 0  

and the magnetic moment as well as to the form factors and the root-mean-square radius of the 
deuteron. As Qd is mainly determined by the outer-range part of the deuteron D-wave, the large Qd in 
conjunction with small PD implies that the outer-range part of the tensor force is hardly suppressed: 
obviously, meson retardation, being an off-shell effect, influences only the short-range part of the 
interaction. Furthermore, if the NN data are to be reproduced quantitatively, ANN,, = 1.3 GeV used by 
us is a lower limit for that parameter. Again, this suppresses only the short-range part (within I fan in 
coordinate space). For that reason, our model is able to reproduce the rather large experimental value 
for the asymptotic DIS state ratio (D/S) resulting from the analysisof the experiments by Ericson and 
Rosa-Clot [27]. An additional reason for our large values for Qd and DIS is given by small, but crucial 
contributions to the intermediate-range tensor force from the 3~r and 4rr contributions discussed in 
section 7. Finally, we mention the extremely good reproduction of the triplet low-energy parameters, 
which usually pose a problem in simple boson-exchange models [50-52, 117]. For numerical values for 
the deuteron wave functions and a practical parametrization, we refer to appendix D.3. 

8.2. The meson parameters 

The meson parameters used in our model are given in table 4, together with some information about 
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Table 3 
Deuteron and low-energy scattering parameters predicted by our full model (Theory) and from experiment 

(Experiment) 

Theory" Experiment b References 

Deuteron: 
binding energy e d (Me¥) 2.22465 2.224644 ± 0.000046 Houk [104] 

2.224575 -+ 0.000009 van der Leun [105] 
D-state probability Po (%) 4.249 (5 -+ 2) c 
quadrupole moment Qd (fro2) 0.2807 0.2860 ± 0.0015 Reid [106] 

Bishop [107] 
0.2859 ± 0.0003 Bishop [107] 

Ericson [271 
magnetic moment P'd (/h~) 0.8555 0.857406 --+ 0.000001 Lindgren [108] 
asymptotic S-state As (fin-l,2) 0.9046" (0.8846 -+ 0.0016 Ericson [27]) d 
asymptotic D/S-state DIS 0.02668 0.0271 -+ 0.0008 Ericson [27] 
root-mean-square radius r a (fin) 2.0016' 1.9635---0.0045 B~rard [109] 

1.9660 ± 0.0068 Simon [110] 
AA-probability (%) 0.500 
neutron-proton low-energy scattering (scattering length a, effective range r): 
~So: a, (fin) -23.749 -23.748 -+ 0.010 

r, (fin) 2.766 2.75 ± 0.05 
3S,: a, (fin) 5.427 5.424 -+ 0.004 

r, = p(0, 0) (fin) 1.755 1.759 ± 0.005 

Dumbrajs [111] 
Dumbrajs [111] 
Dumbrajs [111] 
Dumbrajs [111] 

• In the theoretical results given here, the meson-exchange-current corrections (MECC) are not yet included 
and, therefore, the nucleonic wave function has been normalized to unity. In a more refined consideration, the A and 
mesonic components should be separated out of the total wave function. This would,.on the one hand, reduce the 
normalization of the pure nucleonic wave function and, consequently, also the theoretical predictions for some 
deuteron properties (as e.g. Qd, /Ld or rd); but, on the other hand, MECC have to be added, which will, at least 
partly, (over)compensate the reduction. The probability for the non (-pure) nucleonic component in the deuteron 
turns out to be 3.79% in our model. Reducing the normalization of the wave function by this percentage implies 
A s = 0.8873 (there are no MECC for As) and r d = 1.9257 fin (there are MECC for rd). This "renormalization" of 
the wave function is intimately related to the energy-dependence of our full model (see also appendix D.2). For 
predictions from our energy-hzdependent meson-exchange model see table 6. 

b The experimental values for some of the deuteron properties are controversial; for a discussion see refs. [27] 
and [112]. We have doubled experimental errors estimated by the theorist Ericson [27]. 

c There is no direct experimental access to Pv. 
d The "experimental" value for A s is model-dependent. In general, for its derivation energy-independence of the 

nuclear force is assumed which however is not true for our full model. 

the coupling constants from other sources. We will discuss the coupling constants first and then turn to 
the cutoffs. 

8.2.1. The coupling constants 
The ~rNN coupling constant is essentially fixed by the deuteron properties, particularly the Qo and 

the D/S, which both depend most sensitively on the pion coupling. The very satisfactory results for the 
deuteron, discussed in the last paragraph, are the main theoretical basis for our choice. We note that 
the NN scattering phase shifts of high angular momentum being essentially determined by the pion, do 
also provide bounds on the pion coupling constant; however, these bounds are not as precise as those 
provided by the deuteron. The plain reason for this is that the experimental deuteron data are simply 
more accurate. 

In our fits to the NN data, we keep the tensor to vector ratio of the p-coupling, fp/gp, fixed at its 
empirical value of 6.1; we vary the vector coupling gp only. Then, on the basis of our model and with 
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the constraint that the NN data should be reproduced accurately, our value for g2p is determined with 
high precision (within a few percent). The resulting value for gZp (at the meson pole) is somewhat larger 
than the value deduced from a dispersion-theoretical analysis of 'rrN scattering [120, 122]. Note, 
however, that the strength, i.e. the value for the coupling constant at k 2= 0, which is the decisive 
quantity determining the behaviour in the important low angular-momentum partical waves, has to be 
compared. Apart from the coupling constant, this strength depends strongly on the 9NN form factor, 
which is a function of the momentum transfer. In ref. [120] the momentum dependence is not the same 
as in our case. In fact, as a consequence of our form factor (which is supported by current bag model 
calculations for the pion vertex), the strength of our pNN vertex is not larger than that of ref. [120] in 
the physical region. 

Finally, we mention that the large tensor to vector ratio of the p-coupling found in refs. [120-122] 
and applied in our work seems to disagree with the vector dominance model for the electromagnetic 
form factor of the nucleon in its simple interpretation, in which one is led to fo/gp = 3.7. However, in 
ref. [125] it is shown how the large value for f,/go can be reconciled with the vector dominance model 
by assuming that there is also a direct vector coupling of the photon to the nucleon. 

Our value for the to-coupling constant at the meson pole, g2, is roughly twice as large as the 
corresponding strength (i.e. the value at k 2 =0)*. The latter agrees roughly with the dispersion- 
theoretical analyses done by Grein and Kroll [122,124] (which do not provide any k2-dependence) but 
is about twice as large as the value preferred by Hamilton and Oades [98], based on SU(3) arguments** 
and a dispersion-theoretical analysis of KN scattering. The need for the large to-coupling constant with 
regard to a quantitative description of the NN data has been discussed at length and was demonstrated 
in detail in section 6 and fig. 10, to which we refer the interested reader. 

The ~i(983)-meson which, because of its relatively small coupling constant in conjunction with its 
large mass, contributes little, is needed in our model for a simultaneous and precise fit of both S-wave 
phase shifts and the corresponding low-energy parameters (and the deuteron binding energy). 

The physical basis for the ar'rr S-wave contribution (o-') and its quantitative derivation and description 
has been given in length in section 5. 

Our values for the NA,rr- and NAp-coupling constants have been obtained from the quark-model 
relations 

v _ 7 2  o ~ "~ v 
INn= -- ~ f NN,  , f'NN= = (m•12m)'g'NN= , 

('"o)2( 1 - .'SV-"- 

f'Nr~,, g~NP\~m} \ + 

(8.2) 

(For a derivation of these relations see, e.g. Brown and Weise [126].) 

8.2.2. The vertex form factors 
To all vertices we apply the factor eq. (3.3) which is characterized by the cutoff mass A,~. These 

cutoff masses are lying in the quite narrow band of 1.2-1.5 GeV. (Note that A,,. has no physical meaning 
since cr'-exchange represents only an effective description of correlated S-wave 2'rr-exchange; the 

* Once we like to note that the reason for the large difference of the coupling constant at the pole compared to k" = 0 is merely due to the ansatz 
for the form factor eq. (3.3) which we have chosen simply for convenience. In fact there are form factors which show no such difference, e.g. the 
eikonal form factor applied in the HM2 potential [53]. Consequently that potential uses (at the pole!) g"/47r = 10 and g"p/4~r = 0.5. However, the 
eikonal form factor causes problems in nuclear structure because of its energy dependence. 

** The naive quark model suggests g", = 9g"p; see ref. [57], appendix B to chapter X. 
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8-meson and its cutoff is of little relevance.) Such values lead to a rather mild suppression of meson 
exchange in the range of 0.5 to 1.0 fin in a coordinate-space description; they give rise to substantial 
changes below 0.5 fin. 

It is important to note that our value for the NN'rr vertex cutoff, ANN~r = 1.3 GeV, is a lower limit for 
that vertex with regard to a quantitative description of the deuteron properties and the NN scattering 
data, particularly P-phase shifts. In contrast, our cutoff mass for the NA,# vertex, ANa,, = 1.2 GeV, is an 
upper limit. Beyond that value the uncorrelated 2,,r-exchange in lower partial waves becomes uncon- 
trollably large. We note that in former (static) models including A-isobars [70]-there used to be a 
tremendous difference between ANN,, and ANal, (of the order of 1 GeV) which is unreasonable. The fact 
that we obtain very close values for the cutoff masses of both pion vertices is due to our rather large 
value for ANa,, of 1.2 GeV (compared to former models). This value, which is more consistent with 
ANN,,, is possible due to the inclusion of e-exchange and of meson retardation which both suppress the 
A contributions in a natural and realistic way. 

Furthermore, we like to stress that our form factor for the pNN vertex agrees very well with results 
obtained from fits to the electromagnetic form factor of the nucleon [125]. Note that for the 
electromagnetic form factor of the nucleon a dipole is preferred whereas we use a monopole (per 
vertex). However, the NN problem is rather insensitive to the particular analytic structure of the form 
factor and could be equally well described in terms of dipole form factors if an equivalent cutoff mass is 
used. The rule by which the cutoff masses have to be compiled is: Adlpote = V~Amonopo~e. In this sense 
we agree precisely with the findings of ref. [125] for the electromagnetic form factor of the nucleon. 

As stated before, the presence of form factors is dictated by the extended quark structure of hadrons 
and the cutoff masses A~ can be directly related to the hadron size. In the Cloudy-Bag Model (CBM) 
[7], for example, the ~rNN form factor is given by 

FNN~,(k ) = 3 ll(kR) • k = Ikl (8.3) 
kR ' 

where j~ is a spherical Bessel function, k the momentum transfer and R the bag radius, which, in that 
model, is supposed to be between 0.8 and 1 fan. As far as low-energy (E~a b ~ 300 MeV) NN scattering is 
concerned, eq. (8.3) can be well approximated [127] by eq. (3.3) (using n,  = 1) if the cutoff parameters 
are related by A,, = vTO/R. Thus, the CBM radius R ~> 0.8 fin corresponds to a cutoff-mass A,~ ~< 
0.8 GeV, which leads to a modification of the ~r-exchange potential at distances of 2 fin, see ref. [127]. A 
similar, strong suppression is to be expected for the other meson exchanges. It turns out that, in the 
framework of our meson-exchange model, a quantitative description of the NN data is by no means 
possible with such small values for A,; the lower limit for the NN vertex cutoffs in our model is 1.3 GeV, 
which corresponds to R -~ 0.5 fin. Quite interestingly, there is also an upper limit for some NN vertices, 
particularly the p (of about 1.6 GeV), which might indicate that a certain minimal extension of the 
nucleon (R -~ 0.4 fin) has to be implemented at any rate in order to account for the empirical facts of the 
NN system. As discussed, the cutoff mass for the N ~ r  vertex used in our model, ANa ~ = 1.2 GeV, is an 
upper limit, which is even more indicative that the assumption of an extended structure of the hadrons 
is crucial to our meson exchange model. 

8.3. Final remarks concerning the results 

In summary we note that not all parameters given in table 4 are varied to obtain a best fit to the NN 
data. In fact, there are essentially only six fitted parameters in our model, namely gNN,,, gNNp, gNNo,, 
ANN~r , ANa~r and ANN p. 



40 R. Machleidt et al., TI, e Bonn meson-~rchange model [or the nucleon-nucleon bateraction 

The high quality of the quantitative description of the NN data by our model can be clearly traced to 
the inclusion of the crossed-box diagrams for all two-boson-exchange processes considered. When these 
crossed boxes are omitted the fit of the data deteriorates considerably and, at the same time, the 
meson-nucleon coupling constants resulting from such a fit assume in part unrealistic values [71]. 

9. The parametrization of the nuclear force by one-boson-exchange terms 

In this section, we parametrize our full model in simple OBE terms (i.e. as one-boson-exchange 
potential (OBEP)) in q- as well as in r-space. Such a parametrization will allow, for instance, an easy 
application in nuclear structure calculations. 

9.1. A relativistic OBEP in q-space (OBEPQ) 

We start with the parametrization in momentum space. First, we omit the 3~r and 4~r processes 
discussed in section 7 which have not been crucial, anyhow. Then, motivated by the results obtained at 
the end of section 6, we replace the 2~r (apart from p) plus ~rp contributions by (scalar iso-scalar) 
g-exchange. After this we are left with OBE terms only, which, however, still have the unpleasant 
feature of being energy-dependent. This complicates applications to nuclear structure physics 
considerably*. Therefore, in the next step, we neglect the retardation terms in the OBE propagators 
which cause the energy dependence, by applying the OBE in the framework of the Blankenbecler- 
Sugar (BbS) reduction [64] of the Bethe-Salpeter equation [63]**. An additional advantage of the BbS 
equation is that it is very similar (using "minimal relativity" it is, in fact, formally identical) to the 
(nonrelativistic) Schr6dinger equation, in spite of the fact that it is a relativistic equation. This feature 
makes the application of the potential in usual (nonrelativistic) nuclear structure physics particularly 
easy. The explicit expressions for this energy-independent momentum space OBEP are derived and 
given in appendix E. 

It is important for us to keep the parameters of the crucial mesons, namely ~r, P and o~, (almost) 
exactly the same as in our full model (compare tables 5 and 4), since we believe that the full model is a 
reliable basis for the determination of those parameters. The cr and 8 parameters are adjusted such that 
a quantitative description of the deuteron binding energy and the low-energy scattering parameters is 
regained (table 6)***. We also add the rl-meson, which is not contained in our full model (see section 4) 
and which typically occurs in OBE potentials. The rl is needed for an improvement of the 3P 1 phase 
shifts which, due to the absence of the ~p contributions, are always too high in OBE approximations, 
see fig. 17. The ~l-coupling constant is at the upper limit of SU(3) predictions (see ref. [57], appendix B 
to chapter X). Note that one essential feature of our model, namely the small tensor force leading to a 
small deuteron D-state probability, is preserved in our approximation. This is due to a rather tricky 
cancellation. Although the neglect of meson retardation increases the tensor force, see section 3, this 
effect is largely cancelled by the omission of the 3~r and 4~r contributions discussed in section 7. The 

* A parametrization of our full model using (energy-dependent) time-ordered OBE terms is given in appendix B.2. 
** Alternatively one can also use the relativistic Thompson equation [128]. This equation and the pseudovector coupling of the pion, both being 

particularly appropriate for relativistic nuclear structure physics, is applied in the OBE parametrization of the Bonn potential given in ref. [129]. 
*** For the T = 0 NN states we Choose a slightly higher (r mass than in T = I (see table 5). The reason for this is that the shorter ranged crossed 

21r and double A diagrams prevail in T= O. Note~ however, that the T= 1 parameters given in the table also fit the T= 0 phase shifts and all 
deuteron parameters. Yet the accurate description of the triplet S low-energy scattering parameters a, and r,, require the higher o- mass. This is 
important for few-body reactions at low energies. For the many-body problem the different ¢ mass for the T= 0 states plays essentially no role. This 
remark applies to all OBEPs presented in this paper. 
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Table 5 
Meson parameters used in the relativistic (energy-independent) momentum space 

one-boson-exchange potential (OBEPQ) 

g2J4~'; [[,~go] g2.14~r(k'= O) m° [MeV] A° [GeV] n, 

~r 14.6 14.27 138.03 1.3 1 
O 0.81; [6.1] 0.43 769 2.0 2 
"q 5 3.75 548.8 1.5 1 
to 20; [0.0] 10.6 782.6 1.5 1 
~i 1.1075 0.64 983 2.0 1 
tr 8.2797 ~ 7.07 550 ' 2.0 1 

Nuclear mass: m = 938.926 MeV. For notation and empirical values see table 4. 
Here, there are NN vertices only. 

"The parameters for the tr-boson given in the table apply only to the T = 1 NN 
potential. For T=0 we have: m, = 720MeV, g2,14~r = 16.9822 and Ao = 2 GeV. The 
parameters for the other mesons in the table are the same for T = 0 and T = 1. 
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Ti-exchange then further reduces the tensor force to about the strength found in the full model. The 
deuteron wave function of this energy-independent model is given in appendix D.3.3. 

As is seen from fig. 17, and is of course expected from former OBE calculations, this simple picture 
is quite successful in describing the NN scattering phase shifts. There are some slight, though 
characteristic deficiencies at higher energies compared with the predictions of the full model; however, 
they should in general play no significant role in low-energy nuclear structure calculations. 

9.2. A nonrelativistic OBEP in r-space (OBEPR) 

For convenience, we also present an OBE parametrization in r-space. This is obtained by also 
simplifying the vertex functions using so-called nonrelativistic approximations such that an analytic 
Fourier transformation into r-space can be performed. The resulting local potential expressions are 
given in appendix F. As before, the parameters have to be slightly readjusted, see appendix F, table 14, 
in order to obtain realistic predictions for the empirical data, with the constraint to reproduce again one 

Table 6 
Deuteron and low-energy scattering parameters predicted by the 

relativistic (energy-independent) momentum space OBEPQ 

Theory Experiment 

¢d (MeV) 2.2246 2.224644 -+ 0.000046 
Pv (%) 4.38 - 
Qd (fm2) 0.274" 0.2860 - 0.0015 
#d (/~) 0.8548" 0.857406 -+ 0.000001 
A s (fan -112) 0.8862 0.8846 -+ 0.0016 
DIS 0.0262 0.0271 -+ 0.0008 
r d (am) 1.9684 1.9660 +- 0.0068 
a, (fln) -23.744 -23.748 +- 0.010 
r, (fm) 2.704 2.75 -+ 0.05 
a, (fin) 5.424 5.424 - 0.004 
r, (fm) 1.760 1.759 - 0.005 

For notation and references for the experimental data see 
table 3. 

"Meson-exchange-current corrections not included. For Qd 
these range between 0.005 and 0.014 fra 2 [116]. 
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essential feature of our model, namely the low deuteron D-state probability (as far as possible in the 
limited framework of an energy-independent local r-space potential (see table 14)). 

Figure 17 demonstrates that small deficiencies occur in the description of the empirical phase shifts at 
higher energies. Again, however, such discrepancies should not have any large impact on nuclear 
structure calculations. 

9.3. Features of approximate representations of the nuclear force 

Approximate representations of the nuclear force are typically energy-independent 
[49, 50, 52, 60, 86]. A characteristic feature of energy-independent potentials is that it becomes more 
difficult to combine a weak tensor force (low PD) with a large Qd and D/S (compare tables 6 and 3). 
Though the value for Qd in table 6 is still compatible with Current estimates of meson-current 
corrections for Qd [116], it is lower than in our energy-dependent full model. Similar tendencies occur 
in the el-mixing parameter. While the energy-dependent full model- in  spite of its weak tensor 
force - has no problems in e~ up to E~, b = 210 MeV, the energy-independent models Q (section 9.1) and 
R (section 9.2) are doing alright only up to E~a b = 100-150 MeV (a range which, however, is sufficient 
for most nuclear structure applications; note again that the Fermi momentum at nuclear matter density 
is equivalent to  Ela b ~- 125 MeV). 

This problem could be cured by using a larger NNrr cutoff mass (ANN,, = 2.5 GeV, see e.g. HM1 [52]) 
which, however, implies a much stronger tensor force (PD ~-5.8%). This mechanism is probably 
responsible for the fact that all conventionally used potentials which are energy-independent have an 
(almost) point-like NNIr vertex and consequently predict a large PD" However, a priori the nuclear 
force is energy-dependent and has no problems to combine a weak tensor force with an accurate 
description of el and Qd. Therefore we will not change the pion form factor determined reliably in our 
full model, namely ANN,, = 1.3 GeV, when we construct approximate models. The problems with Qd and 
D/S can be partly counterbalanced by an increased pion coupling constant. The features discussed here 
are summarized in table 7. From that table and fig. 17 it is also apparent that a relativistic nonlocal 
potential (OBEPQ) is generally doing better in describing the NN data than a nonrelativistic local one 
(OBEPR). 

Commonly these typical problems of nonrelativistic local r-space potentials are compensated by a 
wild and uncontrollable expenditure of unphysical parameters [49, 60, 86]. We have reasons not to 
follow that trend here. 

Finally, we show in fig. 18 the half-off-shell R-matrix, e q. (C.2), for the various models in the 1S 0 
partial wave and for a fixed energy. It is seen that the off-shell behaviour induced by the simple 
parametrizations is very different from the original model, in spite of the fact that the on-shell data 
(phase shifts) are quite the same in all cases. The reasons for the different off-shell behaviour of 
OBEPQ and OBEPR, on the one hand, and the full model, on the other hand, are meson retardation 
and higher-order diagrams which both have about an equally strong effect. Commonly employed NN 

Table 7 
Some deuteron properties and the pion coupling constant for various 

meson-exchange models presented in this paper 

PD Q~ DIS g2.14~r 
Full model 4.25% 0.281 0.0267 14.4 
OBEPQ 4,38% 0.274 0.0262 14.6 
OBEPR 4.81% 0.274 0.0260 14.9 
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Fig. 18. Half-off-shell R-matrix, R(q', q; q), in the ~S 0 partial wave, for various models of the nuclear force. The results are given for (a) 
En, b = 142 MeV (E~, b =2q~lm) and (b) El, ~ = ~ 0  MeV, as a function of q'. The on-shell value is marked by a-cross. Tile full line stands for the full 
model; the dashed-dotted for OBEPQ; the dashed for OBEPR. 

potentials [60, 86] have a half-off-shell R-matrix very similar to OBEPQ and OBEPR. It would be 
interesting to see whether this different off-shell behaviour has any impact on observable quantities. 

10. Some remarks concerning nuclear structure 

A long standing problem in nuclear matter theory is that conventional two-nucleon potentials seem 
to underbind nuclear matter considerably (by several MeV) at densities below the empirical nuclear 
matter saturation density (i.e. for k F -< 1.35 frn -1 with k F the Fermi momentum). On the other hand, 
these same potentials lead to overbinding for k F > 1.35 fm -1 (see refs. [130, 131]). As a consequence of 
these two deficiencies, saturation is predicted at about twice the empirical saturation density. The 
results in finite nuclei reflect this deficient feature observed in nuclear matter; namely, light nuclei (e.g. 
3H, 4He, 160) are strongly underbound, whereas heavier nuclei are predicted with too small radii 
[130, 131]. These results have (mis-) led some physicists to the belief that rather elaborate three-nucleon 
forces must exist in nature with the peculiar feature of being attractive at low nuclear densities and 
turning repulsive at higher densities. This belief is based on the assumption that all realistic two-nucleon 
potentials lead to nuclear matter results o f  the deficient kind described above. However, this 
assumption is wrong. In fact, the two-nucleon interaction presented in this paper has-  as pointed out 
repeatedly-a relatively weak tensor force, which is reflected in a low deuteron D-state probability 
(PD)" Our model shows that a weaktensor force (PD = 4.5%) is consistent with all known NN data and 
is strongly suggested by meson theory. In addition, e.g. from forward deuteron photodisintegration 
[114], there are empirical indications that the percentage D state is low (~4.5%) [115]. The common 
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prejudice that realistic potentials should predict a high Po (=5.5-6.5%) is due to an accident. For plain 
convenience only the simplest NN interactions have been applied in nuclear structure; simplest meaning 
an energy-independent, local, phenomenological, r-space potential. Due to the (unphysical) assumption 
of point hadrons and the static approximation inherent to these simplest potentials the tensor force 
(derived i~rom OPE) must turn out to be strong. However, as pointed out in this work, the extended 
structure of hadrons and meson retardation have to be taken into account in a consistenf and refined 
meson theory. Both produce sizable effects on the tensor force cutting it down such that the PD turns 
out to be about 4.5%. This has important consequences for the nuclear matter binding energy. Namely, 
a low PD nuclear potential does not underbind nuclear matter anymore at densities below nuclear 
matter saturation. In fact, the NN interaction presented in this paper predicts an energy per nucleon of 
-12.7MeV at k r=  1.1fm -1 (the average density of 160) and -15.6MeV at kF=l .25fm -~* in 
agreement with the empirical nuclear matter curve given in ref. [131]. Of course, there is overbinding at 
higher densities, k F >-- 1.35 fm -1. However, these densities do not occur in realistic nuclei, and therefore 
are not very relevant for conventional nuclear structure physics, particularly, in the range of light and 
medium heavy nuclei. Furthermore, at higher densities there are medium effects of various kinds which 
quench the binding strength of the nuclear force when it is inserted into the nuclear many-body 
problem. These effects are due to meson and isobar degrees of freedom [70,133,135,136] as well as 
strongly density-dependent relativistic effects [82, 83, 85,129]. In fact, when the relativistic medium 
effects as estimated by Brown et al. [85] and calculated accurately in ref. [129] are added, saturation is 
obtained at k F = 1.36fm -t and an energy per nucleon of about -16MeV which are the empirical 
values. Due to the strong density dependence of the medium effect, the result at lower densities 
remains essentially unaltered. Therefore, it is a reasonable approach to nuclear structure physics to 
consider the light and medium heavy nuclei, first, in the framework of two-body forces only: With 
regard to the low density of these systems "fancy" corrections, like medium effects and many-body 
forces, should not play an important role. Therefore, a low PD nuclear force, as presented in this paper, 
applied to light and medium heavy nuclei might solve some of the traditional theoretical nuclear 
structure problems. Also, from empirical deductions of shell-model matrix elements a weak tensor force 
is indicated [137]. 

If one wants to include fancier ingredients, like three-body forces, which might be quite appropriate 
at higher densities, they have to be evaluated in a way consistent with the two-body force applied. For 
instance, A-excitation of the nucleon in the medium gives rise to a three-body force due to ~r- and 
p-exchange with different nucleons [138]. For these meson exchanges the same coupling constants and 
form factors apply as determined and used for the two-body force, i.e. there is no free parameter in the 
three-body force! Also the=same theoretical framework has to be applied for all processes considered. 
When including A-degrees of freedom this framework leads already to medium effects on the two-body 
force which have to be taken into account simultaneously with the three-body force. There will be 
partial cancellations between both effects. An isolated consideration of only one of the two effects is 
therefore meaningless. Only this consistent consideration of many-body effects and many-body forces, 
for which our model provides the basis, can claim credibility in going beyond the conventional 
framework of a two-body potential. 

* Applying OBEPQ (see section 9.1) in a lowest-order Brueckner calculation using the continuous choice for the single-particle potential in 
nuclear matter. Note that a lowest-order Brueckner calculation with the continuous choice leads to very much the same results as choosing the 
"gap" prescription (see ref. [133] for a definition) and including three- and foot-body correlations. This is seen clearly when comparing Day's results 
[130] for HM1 [52] with those given in ref. [133] (see fig. 3, therein) for that same NN potential using the continuous choice. In fact, in ref. [134] it is 
expfieitly proven that higher correlations in the framework of the continuous choice turn out to be negfigibly small. 
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II. Summary, conclusions and outlook 

In this paper, we have presented a comprehensive field-theoretical meson-exchange model for the 
NN interaction. Our general scheme is to treat nucleons, isobars and mesons on an equal footing. 
Consequently we start from a field-theoretical Hamiltonian H which in its interaction part consists of 
NN-meson and NA-meson vertices. H is treated in relativistic time-ordered perturbation theory which 
allows for a well-defined transition from the two- to the many-body problem. The extended structure of 
hadrons is taken into account by vertex form factors which are parametrized by the so-called cutoff 
mass A~. The constraint of a quantitative description of the NN data up to E~a b -~ 300 MeV leads to 
cutoff masses in the range 1.2-1.5 GeV. Our model is considered comprehensive and consistent in the 
sense that it includes all relevant diagrams with a total exchanged mass up to about the cutoff mass 
(~1 GeV). The va/'ious meson-exchange contributions in that range are introduced step by step 
proceeding from lowest-order to higher-order processes and from long range to short range. 

The well-known one-meson-exchange contributions from ~r and ~o provide the (long-range) tensor 
and the short-range repulsion and spin-orbit force. Our 2~r-exchange model describing the intermediate 
range of the nuclear force takes nucleon resonances (isobars) and direct rr'tr interaction into account. 
The latter contribution is consistent with quantitative results from q'r~r scattering. For the uncorrelated 
2~r-exchange, box and Crossed-box contributions are included both being about equally large. Higher 
angular momentum phase shifts of NN scattering reflecting an intermediate internucleonic range are 
described quantitatively by this model. Within the uncertainties inherent to the dispersio~l theoretic 
approach to the 2~r-exchange we achieve agreement with results stemmimg from that theory. 

For the description of the low angular momentum phase shifts (particularly P-waves) it turns out to 
be crucial to include diagrams of combined rr- and p-exchange. Furthermore, a strong omega-coupling 
constant is required. 

Further diagrams of 37- and 4qr-exchange have little significance due to strong mutual cancellations 
in between those contributions. In this way a strong convergence in our diagrammatic expansion is 
clearly established provided that the diagrams are grouped in a suitable way as dictated by the physics 
of the NN problem. 

An excellent quantitative description of the deuteron data, NN scattering phase shifts and observ- 
ables is achieved. This can clearly be traced to the "completeness" of the set of diagrams we include in 
our model. Most noticeably, the tensor force turns out to be weak in our model which is seen in a low 
percentage D state of the deuteron, whereas the quadrupole moment and the asymptotic D/S state of 
the deuteron are large and in perfect agreement with experiment. The weak tensor force can be 
attributed to p-exchange, a realistic qrNN form factor and the inclusion of meson retardation. 

The coupling constants obtained from the best fit to the data are in overall agreement with 
information from other sources (e.g. qrN scattering, electromagnetic form factor of the nucleon). Due to 
the comprehensive character of our model within the framework of meson theory, our parameter values 
are essentially uniquely determined*. In order to further establish (from the theoretical point of view) 
the validity of the meson-exchange picture for the (low-energy) NN problem, these values could be 
compared with reliable determinations from QCD, which, however, do not exist at present. 

Our model represents a sound basis for addressing several important issues in nuclear and 
intermediate-energy physics in the future. First of all, its energy dependence leads automatically to 
meson production processes at intermediate energies and therefore provides a consistent description of 

* If one takes in addition self-energy diagrams explicitly into account (which is necessary for a realistic treatment of the NN problem'above pion 
threshold) the resulting best fit parameters will change only slightly [139]. 
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the NN interaction and the coupling to pion production channels. Moreover, the weak tensor force has 
strong implications for nuclear structure leading generally to more attraction in the nuclear few and 
many-body system. This feature may contribute to the solution of some long-standing problems in that 
field. Furthermore, the comprehensive set of diagrams contributing to the NN interaction, represents a 
sound basis for a consistent generalization to three-body forces and a "complete" accounting of 
meson-exchange-current contributions to the electromagnetic properties of nuclei. Medium modifica- 
tions of the nuclear force, when applied in the many-body problem, due to relativistic effects as well as 
meson and isobar degrees of freedom are other outstanding problems which can be examined 
thoroughly on the basis of our model. The issues raised as well as many others are an exciting challenge 
for the future. 
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Appendix A: Field-theoretical framework for mesons and baryons 

Our starting point is the field-theoretical Hamiltonian 

H=Ho+W 

with the free Hamiltonian 

Ho=ho+ t, 

where 

ho=EE b;bo 

is the kinetic energy operator for baryons and 

t=~o),a+~a, 
¢t 

(A.1) 

(A.2) 

(A.3) 

(A.4) 
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+ + 
the corresponding operator for mesons, a`', a,~ and b#, b# are the creation, destruction operators for 
mesons (bosons) and baryons (fermions) obeying the usual commutator and anticommutator relations. 
a and fl denote all quantum numbers which specify the respective state completely. Note that therefore 
the sum in eqs. (A.3) and (A.4) also includes the integration over all momenta, to,, and Ea are the 
renormalized (physical) relativistic kinetic energies of mesons and baryons, respectively. Thus, we work 
in a Hilbert space which consists of physical meson and baryon states. 

For the meson-baryon interaction term W we assume the general structure 

W= E W~,#~b+~,b#a~ +h.c. (A.5) 
,a'#,~ 

with h.c. denoting the hermitian conjugate. 
In this paper we will restrict ourselves to N(939) and A(1232) for the baryons and to the mesons 

given in table 4. The reasons for this sub-selection are discussed in sections 4 and 5. With these particles 
we have the interaction terms described pictorially in fig. l(a) for nucleons and mesons and in fig. l(b) 
for nucleons, A-isobars and mesons. We omit AA vertices. Note that the A is treated in the quark-model 
sense, i.e. as a new particle distinct from the nucleon. The scheme displayed in eqs. (A.1)-(A.5) is the 
basis for a field-theoretical description of nuclear physics in terms of nucleons, isobars and mesons. 
Though, in this paper, we will confine ourselves to the two-nucleon problem below pion-production 
threshold, we mention that the extension above is straightforward [139] and that, furthermore, 
important issues of nuclear physics such as the many-body problem, meson-exchange currents and 
isobar contributions to the electromagnetic properties of nuclei can be treated consistently on the basis 
of this scheme [68, 140]. 

The next step is to define a transition matrix T (restricted to the two-nucleon space) by relating it to 
the standard S-matrix, 

= - i 8 ° ) ( e  ' - P)(/3~/3~1 (A.6) 

where P (P') is the total four-momentum in the in (out)-going state, [tilt2) = b+atb+hl O) and 10) the 
vacuum state. Treating H in time-ordered perturbation theory [141,142], can be 
represented by a series expansion defined by all diagrams containing two ingoing, /31fl2, and two 
outgoing,/3~/3~, nucleon lines. This series can partially be summed by solving a (three-dimensional) 
integral equation of the Lippmann-Schwinger type 

r(e)= v(e) + v(e) 
E - h~ ~) + i e 

r(e), (A.7) 

with E the energy of the initial state and h~ N) the nucleonic part of the baryon kinetic energy operator, 
eq. (A.3). The energy (E)-dependent quasipotential V(E) (the kernel of this integral equation) consists 
of the (infinite) sum of all diagrams involving at least one meson or one A-isobar in each intermediate 
state (irreducible diagrams in the NN channel). Diagrams involving at least one intermediate state with 
nucleons only are generated by the scattering equation. For example, in fig. 19, diagrams (a) and (b) 
belong to V(E) whereas (c) and (d) are generated by the scattering equation. Note that each time 
ordering has to be taken into account separately. For example, there are twelve diagrams involving one 
A which contribute to V(E). These diagrams are shown in fig. 20. In this figure, diagrams 1-4, having 
one intermediate state without a meson, are the iterative diagrams; 5-6 are called stretched-box 
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/ / "  
/ / '  / /  

(a) 

II 
(b) (c) 

f"l .~. j .  

(d) 

Fig. 19. Diagrams appearing in the perturbation expansion. (a) and (b) belong to V(E) whereas (c) and (d) are generated by the scattering equation 
(A.7). 

1 12 3 4 6 

S ~ 

7 8 9 10 11 12 

Fig. 20. Time-ordered diagrams with positive-energy NA intermediate states. Diagrams 1--4 are the iterative boxes, 5-6 stretched boxes and .7-12 
crossed boxes. 

diagrams, whereas 7-12 are the so-called crossed-box diagrams. In order to show all diagrams included 
in V(E) in a way which is easy to  survey, we introduce a short-hand notation (which is applied in 
sections 4-7): e.g., graphically, we will represent diagrams 1-5 and 7-12 by one diagram each, see fig. 
21. Note that the sum of all time-orderings shown corresponds to Feynman diagrams with the exclusion 
of negative-energy states. Furthermore, in our short notation, the two time-orderings for single-meson 
exchange will be represented by one diagram. For the case of one-pion exchange this is shown in fig. 22. 
We account for self-energy contributions by defining the free Hamiltonian with renormalized quantities 
and using empirical masses in the meson exchange diagramS, which is correct on-shell and should be a 
good approximation since we stay below pion-production threshold. 

p11 t 
1 - 6  7 - 1 2  

(6) Ibl 

Fig. 21. Graphical short-hand notation for NA processes. Diagram (a) represents the sum of diagrams 1-6 of fig, 20 whereas diagram (b) stands for 
diagrams 7-12 of that same figure. 
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h' I h' 2 

-~l,Eqi _--,~t,Eql 

I'";'-o/ 
7/" ~. 77" 

q..-,--, Eq _T, E q 

hi ;k 2 
Fig. 22. Graphical short-hand notation for the two time-ordered processes of one-pion exchange. 

Appendix B: Meson-exchange contributions in time-ordered perturbation theory 

B.I. The fields and the interaction Hamihonians 

We start with the standard representation for the field operators 

1 ~ u(q, A) exp(-i  q.x) bq~ ~b(x) = (2~r)3,2 q.~ , , 

¢~,(x)= (2~.)3,2 . u~,(q,A)exp(-iq.x)bq.~, 

1 ~ 1 [ exp( - ik .x )  a k + e x p ( i k ' x )  a~] ¢(x)-- (2~)~,~ ~ 

¢,, (x) = (2ir)3,~ . ~ e~, (k, s)[exp(-i k" x) a,., + exp(i k. x) ak+,], 

(B.1) 

for nucleons, A-isobars, scalar (pseudoscalar) and vector mesons, respectively. (Note that we omit 
antiparticles from the beginning.) In our notation, the sum E over a momentum, e.g. q, stands for the 
integral j" d3q. Spinors are represented in a helicity state basis, as this is most appropriate and 
convenient for the evaluation of meson-exchange contributions to the NN interaction. The helicity ~. is 
defined as the eigenvalue of the operator s. ~ with s the spin operator and z~ = q/Iql the unit momentum 
operator of the baryon. The Dirac spinors, u(q, ,~), are normalized by 

u+(q,A) u(q,A)=l. (B.2) 

%,(q, A) is the Rarita-Schwinger spinor [111,143,144] representing a A-isobar with spin 3/2. e,,(k, s) is 
the polarization vector describing vector mesons, to k denotes the energy of a meson and k. x is the 
scalar product of the four-momentum k and space-time four-vector x. We follow the conventions and 
notations of Bjorken and Drell [145], except when stated otherwise. (Note, e.g., that our normalization 
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of the Dirac spinors eq. (B.2) differs from ref. [145].) The isospin dependence, which can be trivially 
taken into account, is suppressed, as customary, when formalism is described. 

The interaction Hamiltonian is defined by 

f [ 0~, ..(~,)] (B.3) W = -  dax ~x(x) ~.(~) ~ .  j~o=O, a~Oa 

where the dot denotes the time derivative. Applying time-ordered perturbation theory [141], we work 
in the Schr6dinger picture, in which the interaction is time-independent. This explains the "condition" 
x 0 = 0 in eq. (B.3). With the definition for W (eq. (B.3)) we derive from the interaction Lagrangian 
densities, eqs. (3.1) and (3.2), together with the vertex form factor function, eq. (3.3), and the fields, 
eq. (B.1), the matrix elements W#.#, defined in eq. (A.5). 

w(NNps) gps ~(3)(q#, q# k) if(q#,, A#.)i 3, 5 #'/~ot = - -  ps 3 i / a  - - u(q#, A#) Fps(k 2) [2~% (2rr) ] 

w(Nr~s) gs 
= - s ~ ,,a 8(3)(q#,- q/, - k) u(q#, a#.) u(q#, X#) F~(k 2) 

,, #,#,, [2¢ok(2rr ) ] ' , 
(B.4) 

W( Nv) _ : ( k ,  s) #'t3~ = [2w~,(2rr)3]"z 6(3)(q0'- q# - k)[(gv +fv) if(q#,, A#,) y~u(q#, A#) 

L 
2m a(q#" a#,)(q#, + q#),, u(q#, ao] Fv(k2) , 

w(a~)  + fNa,, i 
= - -  k u i ( q # , , / ~ . f l ,  ) u (  q#, A# ) FN,,, (k 2) " #'#" m,, [2~o7.(2rr)3] "2 60)(q#' q # - k )  '-  

W(aNp) _ fNao 1 
#,#,, me [2to~,(21r)a],z t~(3)(q#, - q# - k)[kis"(k, s) a~(q#,, k#,) ySZ.u(q#, A.#) (B.5) 

-kick'(k, s) fij( q#,, X#,) ySy~,u( q#, A#)]FNap(k2). 

w(ar~) by taking the complex conjugate and changing k to - k  in w ~a~) is obtained from ,, #,#,, The vertex ,, #,#,, 
the g-function. Note that for the quantum numbers of the different particles, we have used the 
following notation: mesons: a = (to k, k, s), baryons:/3 = (E#, q#, A#) - (apart from total spin, isospin, 
parity and others). As seen clearly from eqs. (B.4) and (B.5), in time-ordered perturbation theory 
there is three-momentum conservation at the vertices. Furthermore, all particles are always on their 
mass shell. Therefore, energy is not conserved at the vertices. 

To obtain the NNps vertex as given in eq. (B.4) we applied the Dirac equation to the original 
pseudovector coupling. In the case of the NNv vertex we applied the Gordon decomposition [145]. In 
both cases there is an additional off-shell term which we omit. The effects of these (omitted) off-shell 
terms are such that a small change in the cutoff parameter of the vertex form factor F,(k 2) would 
compensate for them. 

B.2. The second-order contributions 

The lowest-order diagrams contributing to the NN interaction kernel V(E) are of second order in W 
and are given by 
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fl"fl~ E -  h o - t linked 
(B.6) 

Explicitly we obtain for the one-pion-exchange potential (fig. 22), in the two-nucleon center of mass 
(c.m.) system and helicity-state basis, 

g2 1 tS(q', A'Oi TSu(q, AI)/~(_qt, A;)i ySu(-q, A2) 
< q'a[a~lv~)(E)lqa, a=) =2 ~ r, . r  2 2to~. E -  Eq, - E q -  to~ 

xF2,,(k2) • (B.7) 

Here, E=2Eq is the starting energy, Ai, A I ( i= 1,2) are the relevant helicities; E q = ~ - ~ +  q2, 

Eq, = ~/m z + (2  and to k = ~/mZ + (q, _ q)2. The v,. ~'2 factor is due to the exchange of an isospin I = 1 
meson. The denominator is obtained by subtracting the energies involved in the intermediate state 
(dashed-dotted line in fig. 22) from the starting energy; the factor 2 arises because there are two time 
orderings, which both give the same contribution. The static approximation for the meson propagator 
(which we will not use) is obtained by setting E = Eq. + Eq leading to 

-1 -1  
= _ 2 • ( B . 8 )  (to~-'~ ( q, q)Z + m,, 

Analogously, the OBE contribution due to scalar exchange is given by 

< q,A~A~Iv~z)(E)IqAIA2) _ g~ 1 a(q', A~) u(q, A,) ff(-q', A~) u(-q,  A2) "F~(k2) 
(2rr) 3 tos k E -  eq, - Eq - to; 

and for the exchange of vector mesons 

(B.9) 

where 

< q'AIA;IV~21(E)IqA, A2) = 1 1 1 . .2 , .2 ,  
l ' v~g ) 

( 2 7 r )  3 tok E -  Eq, - Eq - tokV 

x[(g, + L) t/(q', a'~) T~'u(q, Xl)- L ~(q,, a,1)(q, 

x [(gv + L) ff(-q', a~) T,,u(-q, x2) 

2m f~ a(-q', a;) (q'+ q)'~ u(-q, x~)] 

+q)" u(q, A,) ] 

(B.10) 

3 
___ tt v 2 ~, e~'(k,s) e~(k,s) -g~'~ + k k'/m, (a.Xl) 

$=1 

has been used with the last term onthe r.h.s, being dropped. 
This finishes the consideration of one-meson-exchange contributions. For further more detailed 

evaluations of eqs. (B.7)-(B.10) see appendix E. It is well known that with the OBE contributions 
derived so far, a quantitative description of the NN data is, indeed, possible. In table 8 we give an 
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Table 8 
Meson and low-energy parameters (LEP) of an (energy-dependent) one-boson-exchange poten- 

tial based on time-ordered perturbation theory (OBEPT) 

gZ./4r:; [.fJg°] m. (MeV) a .  (GeV) LEP Theory 

Ir 14.6 
p 0.92; [6.1] 
'lq 5.0 

20.0; [0.0] 

1.1585 

8.8543 

138.03 1.75 e d (MeV) 2.2245 
769.0 1.5 Po (%) 4.27 
548.8 1.5 Qa (fro 2) 0.278 
782.6 1.5 DIS 0.0267 

a, (fm) -23.748 
983.0 2.0 q (fm) 2.759 

a, (fm) 5.426 
550.0' 2.0 r, (fm) 1.755 

Nucleon mass: m = 938.926 MeV. For notation and experimental data see tables 3 and 4, 
n,,= 1. 

The parameters for the tr-boson given in the table apply only to the T = 1 NN potential. For 
T = 0 we have: m,, = 615 MeV, g2o14¢r = 11.7027 and A, = 2.0 GeV. The parameters for the other 
mesons are the same for T = 0  and T= 1. 

example. Note that ~r and ~q are pseudoscalar, tr and ~ scalar and co and p vector mesons. The 
expressions for the exchange of the isospin I = 1 mesons ~r, ~ and p get an additional factor ¢ , .  ¢2. The 
NN potential is defined as the sum of the OBE contributions of these six mesons. 

B.3. Fourth-order contributions 

Now let us turn to the fourth-order diagrams in W which are given by 

< 1 W 1 W 1 W fl, fl2> 
f l ' lf l~ W E - h o - t E - h o - t E - h o - t . . k ~ d  

= 6(3)(q#{ + q#~- q#,- qa2)(fl',fl~lV(4)(E)l~,fl2>. (B.12) 

This expression contains iterative plus noniterative diagrams with nucleons as well as A-isobars in 
intermediate states, involving all possible two-meson exchanges. Note that the one-meson-exchange 
contributions are iterated in the scattering equation (A.7). Therefore we have to remove all iterative 
diagrams involving two-nucleon intermediate states from eq. (B.12). 

In order to elucidate the structure of eq. (B.12) we will, as an example, consider the processes with 
NA intermediate states and involving 2,n--exchange. For notation, see fig. 23. We start with the iterative 
contributions represented by diagrams I-4 of fig. 20, 

, , , ,t g2. f~a,~2 (2+3Lrl .¢2) d3k ., "~ -~ .-,it (q  A'AEIM [qAxA2)= (2"rr) 6 rn~ °¢O.)q,_k(Oq_kl-) 

x fi(q', A'~) i(k - q')iP+(ii k) i(k - q)iu(q, At) FNa..[(q' - k)2]FNa~,[(q - k) 2] 

xf i (-q ' ,  A~)iySA+(-k) i rSu( -q ,  A2) FNN,,[( q' -- k)2]tNN,,[( q - k)2], 

(B.13) 

where A+(-k)  is the projection operator for positive-energy nucleon states 

1 
Z+(k) = ~ k  (Y°Ek-Y'k + m) (B.14) 
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"~I  "~I "~I q q - q  

"C 
. , . , . .  

. , , . . . . .  

. . . / . . .  

~-k 

... .. ~ "" 
q -q -q 

(o) (b) 

~-_~_~' 

Fig. 9..3. Selected-box (a) and crossed-box (b) diagram displaying the notation used in the text. 

and P ~ ( k )  the corresponding operator for the A-isobar [111,143, 144] 

P~(k) = A+( ) - g  + ]7~3'~ + -3 ~ m  .2 + 3 m* .i ' (B.15) 

where we have used m* for the mass and Eq (q2 + m,2)1/2 for the energy of the A-isobar, and 

1 o , 
A*(k) = ~ -  (7 E k - ' i " k + m * ) .  (B.16) 

For the derivation of the isospin factor (2 + 27~. ~'2) see ref. [126]. Furthermore, 

1 ~4 1 
B it = / ~ l  it , • = D i 

O~=(e--E~.--Ek--'0q._k)(e--ek e k ) ( e - E q - E ~  ,0~_~), 

Z~' = (e--  e , . -  e :  - ,0~._,)(e- e ,  - e Z ) ( e -  e~ - e ~ -  ,o~_k), 

D ~ t = ( E -  E , . -  E z - CO q . _ k ) ( E -  E ,  - E Z ) ( E -  E ,  - E k - ~O q_k), 

(B.17) 

D~ t = ( E -  E ~ . -  E k - ~o~._k)(E- E k - E ~ ) ( E -  Eq - E~. - co~q_k). 

Again the precise structure of the denominators is obtained by the general rule that, in each 
intermediate state, the involved energies have to be subtracted from the starting energy. In order to 
obtain the stretched-box diagrams (5 and 6 of fig. 20) one simply has to replace D" by D s where 

1 1 1 

D-z = - ~  + ¢  2 

11" 'IT 'It D', -- (e- E,. - e~,- ,o,._A(e- ~,. - E,- ,o~._~ - ,o,_A(e- E, - E,- %_~), (B.Ia.) 

D~ -- (e- ~.- E~ - ,o~._A(E- e~.- E~ - o,~._, - ,o~_,)(~- e~ e~ - ,o~_~). 
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For the crossed-box diagrams (diagrams 7-12 of fig. 20, see also fig. 23(b)) we get 

f 1 (q"qX;lMClqX,X2> = g 2  f2a~ , (2_2¢ . l . 2 )  d3k4toq'-kto,-kD (2Ir) 6 - ~  ~, ,~ 

x if(q,, AI) i( q , ii - k ) , P ÷ ( k ) i ( q  - k ) j u ( q ,  AI) F N a ~ [ ( q '  - k )2]Fr~a, , [ (q  - k) 2] 

x a ( - q ' ,  ,X~) i y S A + ( k -  q -  q ' )  i ' r S u ( - q ,  '~2) FNN~[(  q '  - k) 2] FNN,,[(  q -  k)2], 

(B.19) 

with 

m ~ m 

DC C , j=, D] 

C 'IT 'IT ~ t o ~  'IT 

"IT T¢ "IT 

D~ = (E - Ek_q_ q, - Eq. - to q_k)(E - E~ - Ek_q_ q. - to q'-k - to q-k) 

X ( E  - E k _ q _  q, -- Eq  - t o q ' - k ) ,  

T¢ "It T t  'IT 

D 3 = ( E  - E k _ q _ q ,  -- E q , -  to q , _ k ) ( E  - E *  k - E k _ q _  q, -- to q ' - k  -- to q - k ) (  E -- E~. - Eq  - to q - k ) ,  

"¢t '[1" "tr -¢t D~ = ( E  - E ~  - Eq.  - to q , _ k ) ( E  - E~. - E k _ q _  q, - to q ' - k  -- to q - k ) (  E -- Eq  - E k _ q _  q, -- to q ' - k )  , 

D] = ( e -  eq. - ek_q_q.-- toq_k)(e-  eq, - eq toq._k- toq_k)(E- - toq_k), 

Dc6 = ( E _  Eq,  _ E , _ ,, _ _ ,, _ ,, - t o "  k t o q ' - k ) ( E - E q  ' Eq  t o q ' - k  t o q - k ) ( E - E q - E k - q - q  ' q ' - k ) "  

(B.20) 

Based on the vertex functions, eqs. (B.4), (B.5), it is straightforward to write down the corresponding 
expressions for all the other diagrams considered in this paper. The evaluation of these expressions is, 
however, quite involved. Therefore, we refer the interested reader to the literature for further details. 
For the diagrams of 2~r-exchange see refs. [70, 72-74]. The ,up contributions can be found in refs. [71] 
and [75] (the latter reference contains also the noniterative ~cr and ~rto diagrams), 

For the noniterative "up diagrams with one or two A-isobars in the intermediate states, the evaluation 
of which is extremely involved (see ref. [76]), we use an approximation. This approximation is 
suggested by the special isospin structure of box and crossed-box diagrams. Namely, for NA processes, 
the sum of all time orderings is given by 

A. ,  x = (2 + 2"r~. 'r2)BNa + (2 - 32-'h " r2 )C~ ,  a . (B.21) 

Here, (2 + 2¢,. 72)BNa denotes the contribution from all box diagrams (1-6 of fig. 20), whereas 
(2 - ]'h"r2)Cr~a stands for the contribution of all crossed-box contributions (7-12 of fig. 20). Equation 
(B.21) can be rewritten as 

Aria = 2(BNa + Csa) + 32¢," ~'2(Bna - C~a). (B.22) 
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Assuming BNa = CNa, one obtains 

ANa ~ 4BNa, (B.23) 

BNa consists of the four iterative diagrams (1-4 of fig. 20), which can be calculated easily with the help 
of transition potentials (see ref. [71]), furthermore, two stretched-box diagrams (5-6 of fig. 20) are 
contained in BNa. The evaluation of these stretched-box diagrams is as involved as for the crossed-box 
diagrams. Since, however, these are known to be small compared to the iterative diagrams, we are 
ultimately led to the approximation 

' ( B . 2 4 )  A Na ~ 4BNa, 

where B~A denotes the contribution from the iterative box diagrams only. Thus, eq. (B.24) replaces the 
exact result by twice the isoscalar part of the iterative contributions. The quality of this approximation 
has been found to be very good for isospin T = 1 NN states, whereas it seems to overestimate the 
contributions in isospin T = 0 states [76]. It turned out that this overestimation is extremely strong in 
the 3(SD)l states. Since the unapproximated result is quite small in this partial wave [76], we drop the 
contribution due to eq. (B.24) in the 3(SD)1 states. 

The noniterative "rrp contributions with AA intermediate states are treated in analogy to the NA case 
just discussed. We have in obvious notation: 

Aaa=(  4 - 9,'1"1 ' 'I '2)BAA "F (4  all_ 2TI .  T)CAA ' ( B . 2 5 )  

leading to 

Aa a s , (B.26) 

The fourth-order contributions of 2~r- and ~p-exchange, which are derived in part in this appendix and 
discussed with regard to their mathematical structure, allow for a quantitative description of the NN 
data when complemented by OBE. Such a model is discussed in section 6. The parameters of this 
model are given here in table 9. Note that this is not our final "full model" of sections 7 and 8. 

Table 9 
Meson and low-energy parameters (LEP) of a model discussed in section 6 

~/4~-; [[o/gd 
resp. f2o14~r m, A, n, LEP Theory 

NN~r 14.4 138.03 1.5 1 ~d (MeV) 2.2245 
NNp 0.84; [6.1] 769 1.4 1 Po (%) 4.17 
NNto 20; [0.0] 782.6 1.5 1 Qd (fin2) 0.276 
NN8 2.6653 983 2.0 I DIS 0.0262 
NN~' 5.723 550 1.9 1 a, (fin) -23.749 

r, (fin) 2.798 
NA~ 0.224 138.03 I.I 1 a, (fin) 5.436 
NAp 20.45 769 1.4 2 r, (fin) 1.768 

For notation and experimental data see tables 3 and 4. 
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Appendix C: NN scattering 

C.1. The R-matrix equation 

For the evaluation of NN scattering phase shifts it is convenient to work with the R-matrix*, which is 
related to the T-matrix, eq. (A.7), by 

T(E)=  R ( E ) -  iTrR(E) 8 ( E -  h~ N)) T(E). (c.1) 

Thus, for R(E) we obtain from eq. (A.7) 

P 
R(e)  = V(e )  + V(e )  . , . )  R(E) , 

E -  n~ 
(c.2) 

where P denotes the principal value to be applied when the integration over the continuous spectrum of 
h~ N) is carried out. 

As meson-exchange contributions to V(E) are most conveniently represented in the helicity 
formalism, we will consider eq. (C.2) in a plane wave helicity state basis in the two-nucleon c.m. 
system. (We closely follow the presentation given in ref. [51].) 

( q'A~A~IR(E)IqA1A2) = ( q'AIA~IV(E)IqA~A2) 

+ ~, P f  d3k (q,AiA~lV(E)lkhlh2)(kh~h2lR(E)lqA1A2) " 
hl.h 2 E - 2E k 

(c.3) 

Here, q, q' and k are the relative momenta for the initial, final and intermediate states, respectively; Ai, 
A~, and h i (i = 1, 2) denote the corresponding helicities for nucleon I and 2. For example, for nucleon 1 
in the initial state the helicity AI is defined as the eigenvalue of the helicity operator (½ o- 1 • q)/I ql, with 
½tr I the spin operator for nucleon 1; the eigenvalues are -+ ½. The summation in eq. (C.3) extends over 
positive energy intermediate-state helicities, h i = --+ ½. E k = V~m 2 + k 2 and m denotes the nucleon mass. 
Part of the notation is displayed in fig. 22. 

As phase shifts are only defined in terms of partial waves, it is desirable to have eq. (C.3) in partial 
wave decomposition. 

Introducing the two-nucleon state basis IJMAIA2), with J the total angular momentum and M its 
z-component, and assuming rotational invariance, we have the following expansion for R(E): 

( q'A'IA2IR(E)IqA~A2) = ~ ( 4'A~A~I JMA'~A2) ( A'~A~IRS( q', q; E)IAxA2) ( JMA~A214AIA2) , (C.4) 
JM 

where q = Iql, q ' =  Iq'l, 4 = qlq and 4 ' =  q'lq'. An equivalent decomposition can be done for V(E). 
The matrix elements of the transformation from a plane wave helicity basis to angular momentum 
helicity states are [147, 57] 

1/2 { 2J + 1 \ (i) (c.5) 

* Also referred to as the K-matrix in the literature (see e.g. ref. [146]). 
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where a9 and ~ are polar and azimuthal angles defining the direction of q with respect to the z-axis; 
D(~) is the conventional irreducible rotation matrix and 3. = 3.1 - 3.2. These matrix elements satisfy the Mm 
normalization condition 

f da (]M3.13.2143., 3.2> ( 43., 3.2 I]'M'3., 3.2) = 8.~J'SMM', (C.6) 

with dO = d cos 0 dtp. With the help of eqs. (C.4) and (C.6) we can derive now the desired partial 
wave decomposition of eq. (C.3) 

(3.'13.~lR'(q', q; E)I 3.,3.2) = < 3.'13.Y(q', q; E)I 3.13.2) 
¢o 

dkk2 , ,  J 
+ ~" P E - 2E k (3.13.21V ( q'' k; E)lh,h2) 

hi'h2 0 

× (h,h2lR"(k, q; e)13.13.2) • (C.7) 

As, for simplicity, we neglected the isospin dependence so far, we mention now that, assuming charge 
independence, there are two separate equations for isospin T = 0 and T = 1. Equation (C.7) represents 
a coupled system of integral equations to be solved for R J. 

The solution of eq. (C.7) is considerably facilitated by the following considerations. As there are two 
eigenvalues for each helicity, there are in general 16 helicity amplitudes ( 3.~3.~[RJ( q', q; E)I 3.13.2) which 
are coupled. Fortunately, only six are independent. This is due to the special invariance properties of 
the NN interaction. Namely, parity conservation (invariance with regard to space reflections) implies 

(XiX lR'(q', q; E)lx, x2)= q; E ) [ -  3.,,-3.2) • (c.8) 

Conservation of total spin (which is a consequence of isospin and parity conservation in conjunction 
with the antisymmetry requirement for two-nucleon states) leads to 

(XlX2lR''''(q, q; E)IA1A2)= (A'2A~IR'(q', q; E)IA2A1) . (C.9) 

For the six independent amplitudes we choose the following set [51]: 

J t R1( q , q; E) =- ( ++lRJ( q ', q ; E ) l + + ) ,  

R J ,  , at, q ,  q; E ) =  ( +-IR'(q', q; E ) I+ -  ) ,  

R~(q', q; E ) -  ( ÷+IR'( q', q; E ) I - -  ) ,  

R~(q', q; E)=- (+ - IR ' (q ' ,  q; E ) I -+  ) ,  (C.lO) 
J # 

R s ( q , q ; E ) ~ ( + + l R ' ( q ' , q ; E ) [ + -  ) , R ~ 6 ( q ' , q ; E ) = ( + - l R ' ( q ' , q ; E ) l + +  ) , 

where A; = -½ is denoted by - .  Note that time-reversal implies 

R~(q', q)= R~(q, q ' ) .  (C.11) 

To further simplify the on-coming calculations and, in fact, to partly decouple eq. (C.7), we introduce 
the following linear combinations of helicity amplitudes: 
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ORS- R~- RJ2, 

s J 34R~ _ R 3 + R 4 , 

j j 
IR~ _ R 3  - R 4 , 

SSRS-= 2R~, 

'2RS=R~+ R~, 

66RS - -  2R6 J ' 
(C.12) 

where the usual arguments have been suppressed. Note that °RS and 1RJ are identical to the spin singlet 
and uncoupled spin triplet matrix elements, respectively, of the conventional LSJ representation. For 
V s we introduce the analogous definitions*. With these definitions we obtain now for eq. (C.7) the 
following set of integral equations 

f dk k 2 °RS(q', q; E) = °VS(q', q; E) + P E - 2E k °VS(q" k; E) °RS(k, q; E), (C.13a) 
o 

f dk k 2 IRS(q ', q; E)= ~VS(q ', q; E) +P E -2E  k tVS(q" k; E)~RS(k, q; E),  (C.13b) 
o 

f dkk2 '2RS( q', q; E)= '2VS( q', q; E) -t P E_  2E k ['2VJ(q', k; E)'2RJ(k, q; E) 
o 

+SSeS( q', k; E) 66RS(k, q; E)], 

f dk k 2 
34RS( q', q; E) = 34VS( q', q; E) + P E_ 2E k [34VJ( q', k; E)34RS(k, q; E) 

o 

+66VS(q', k; E) SSR'(k, q; E)], (c.13c) 

: f dkk2 [12VS ( SSRS(q"q;E)=55VS(q"q;E)+P ff~--2"Ek q"k;E) SSRS(k'q;E) 
o 

+ SSV'(q', k; E) 34RJ(k, q; E)], 

f dkk z [34VJ ( 66RJ( q" q; E) = 66VJ( q" q; E) + P ff~ :'2-Ek q" k; E) 66Rl(k' q; E) 
' 0 

+66VS(q', k; E) t2RS(k, q; E)]. 

~'ote that only the four equations (C.13c) are coupled. The solution of eq. (C.13) is most conveniently 
[one by the matrix inversion method [67,148]. 

;.2. The phase-shift relations 

The on-shell R-matrix elements are related to the Blatt-Biedenharn [149] phase shifts as follows. 
Spin singlet states (L = J) 

* How to obtain the meson-exchange contributions in the representation used here for R and V is shown explicitly in appendix E. 
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tg °8'(E~,b)= -~rqEq °R'(q, q; E ) .  (C.14a) 

Uncoupled spin triplet states (L = J) 

tg '8"(E~b)= -½~rqE q 'R'( q, q; E) . (C.14b) 

Coupled states 

I [ 12 ./ a 4 R I  12RJ - -  3"IRJ - -  4 ~  ssR~ ] 

V ~  + 1)('2R' - 3'R ' )  + 55RJ 
tg2e,(E,,b) = - 2  n--R-T: aT~ - ~ ~  s-TR-7, 

(C.14c) 

where in eq. (C.14c) the on-shell arguments (q, q; E) have been suppressed for the R-matrix elements, 
and the lower index -T- stands for L = J -T- 1. Note that the on-shell momentum in the c.m. system, q, is 
related to the laboratory energy, E, ab, by 

Elab = 2q21m . (C.15) 

For the energy of the initial state in the c.m. system, E, we have 

E = 2 E q ,  (C.16) 

with Eq = ~ + q2. (We use units such that h = c = 1; conversion factor: hc = 197.3286 MeV-fm.)* 
For all phase shifts published in this work we use the so-called bar convention introduced by Stapp et 
al. [97]. These are related to the Blatt-Biedenham phase shifts by 

+ - _ = 8 + +  sin(g~ - gJ+) = tg 2~Jtg 2e j ,  sin(8 J_ - 8J+) = sin 2~/sin 2ej .  

(C.17) 

C.3. Relating to LSJ basis 

Work in nuclear physics uses prevailingly a ]JMLS) basis for two-nucleon states, with L the orbital 
angular momentum and S the total spin. The matrix elements for the transformation from this 
conventional basis to the ]JMAtA2) basis, which we use here, are [147, 57] 

(JMLSIJMA,A2) = (2L + 1 ) "2(LSOAIJA)( ½1, A,,-A2I SA ) 
\ 2 J + l /  (C.18) 

with A = A l - A  2 (for the Clebsch-Gordon coefficients we use the notation of Messiah [150], i.e. 
(/,/2m,m2[ jt/2JM) = (/,/:n~m2lYM) ). 

* For practical calculations we ~ ' o m m e n d  to use units of MeV for energies, masses and momenta, 
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The formal transformation of R ( E )  is 

<mL'SIR(q', q; E)IJMLS>= Y, <JeL'sIJe~iA~>< ~'~A~lR'(q', q; E)l,~,,~,.> 
xla~aia,_ 

x (JM,t,,t>_ ]SOILS). (c.19) 

Note that due to rotational invariance R ( E )  does not depend on M. Defining the R-matrix elements in 
LSJ  basis by 

• L ' - L r ~ J S  ,, 
i t ~ c . L t q ' , q ; E ) = = - ( J M L ' S I R ( q ' , q ; E ) I J M L S ) ,  (C.20) 

and applying eqs. (C.18) and (C.19) we obtain for the cases of particular interest: 
spin singlet 

R i  ° = °R' (C.2Xa) 

uncoupled spin triplet 

Ri½ = ~R' 

coupled states 

R ' I  - _ _  " - l , J - I  

l l  
R , + I , I +  1 - -  

R J l  _ _ _  
J - l , , + l  

J l  
R , + I , , _  1 - -  

1 [J '2R' + (J + i) 34RJ + J ( J ~ : R ' ]  
2J+  1 

1 12Rj a4 R, 2 J+  1 [(J + 1) + J - ~ : R ' ] ,  

1 [ J(J~/J(-]--+~ bR" - J SSR' + (J + 1) VSR'] 
2J+  1 

1 [~/7(]---4-~bR,+(j+l)SSR,_J66R,] 
2J+  1 

where we use the abbreviation 

a R J  = 55RJ + 66 R '  b R J  = n R l  _ 34RJ" 

(C.21b) 

(C.21c) 

(c.z2) 

with 

/";-,,-, ";-,,'+'/<,, 
U[ RX ' x = .+,.._, R~+,.+,} R~+ ' 

The arguments of R (q', q; E) are suppressed in eq. (C.21). 
For the coupled states the (real, on-shell) R-matrix elements are conventionally pammetrized in 

terms of Blatt-Biedenharn [149] phase shifts 8J+, 8J_ and the mixing parameter ej. This is achieved with 
the help of a unitary transformation U. 



tgS~ = -~" qEq R~_I,j_ I + Rj+I,j+ 1 -+ 

J 
2Rj+I,j-x 

tg2ej = j _RI . 
R j - 1 , J - 1  J+l ,y+l  
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( cose; sine; 
U = \_sin ej cos e,,]" (C.23) 

The diagonal R-matrix elements obtained in eq. (C.22) are related to the phase shifts by 

tg 8~ = -½~rqeqRS~. (C.24) 

From eqs. (C.22)-(C.24) one derives the phase shifts in terms of the R-matrix in conventional LSJ 
basis (compare e.g. refs. [67] and [148]). 

R1 R J . 
J - l , g - 1  - -  J + l , J + l  / 

c-'° s2Z  J '  (C.25) 

Our phase shift relations, eq. (C.14), are obtained by applying the transformation, eq. (C.21) to eq. 
(C.25). 

Appendix D: The deuteron 

D.1. The deuteron equation 

In order to derive the equation for the deuteron bound state, we make use of the fact that V(E) is 
related to effective potentials introduced in the Bloch-Horowitz scheme [151]. The total Hilbert space 
of nucleon, isobar and meson states, ~', is first decomposed into two subspaces: the nucleonic Fock 
space ~'r~ and the rest ~'a; ~ =  ~'N + ~'R" We introduce projection operators: 

P: ~'"* ~N, Q: ~'-> ~R, with P = 1 - Q .  (D.1) 

H is the Hamiltonian of the system under consideration with 

H: ~ ' ~  ~ ' ,  and H~b = E~b. (D.2) 

In the next step we define an effective operator 

Hor,( E ) Pqb = EPq~ (D.3) 

by 

1 
Ha~(E ) = PHP + PHQ E - QHQ QHP. (D.4) 

Setting H = H o + W ([H 0, P] = 0) we may expand the denominator of eq. (D.4) in terms of.W. This 
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expansion for Heff(E ) can be represented by a set of diagrams which, for the two-nucleon problem, are 
precisely the irreducible diagrams represented by V(E) and occurring in the expansion for the scattering 
amplitude T(E), i.e., 

Ha,(E ) = H o + V(E) . (D.5) 

The Schr6dinger equation 

Haf(E)¢ = E~ (D.6) 

(with ~--P~b) is for unbound states equivalent to the scattering equation (A.7). For bound states it 
yields the eigenvalue equation for the deuteron with E = E d = 2m - e a where e d is the binding energy of 
the deuteron and m the nucleon mass. It reads explicitly, in a helicity-state basis 

o o  

1 h~h f dak(qAiA21V(E)lkhlh2)(khlh21~b) (D.7) (qX, Z2l¢/>- E -  2Eq ,, So ' 

with Eq =- ~ + q2. After a partial-wave decomposition (compare appendix C, eqs. (C.3)-(C.7)) we 
obtain 

o o  

1 ~ f dkk2(A,A2lVJ(q,k;E)lh,h2>~(k,h,h2), 
~b~(q' AIA2) = E - 2Eq hi,h20 (D.8) 

where we define ~J(q, A1A2)- (JMAIA2[~b(q)). Similar to eq. (C.7) for the NN scattering problem, 
eq. (D.8) represents a coupled system of integral equations to be solved (numerically) for ~b J. 
Proceeding in analogy to eqs. (C.7)-(C.13) of appendix C we deduce the following set of only partially 
coupled equations (cf. also ref. [51]): 

1 f dk k 2 °VJ(q, k; E) °~bJ(k) 
°¢'(q) = ------Z~q o 

E ' 

'#(q) - E -  aE, dk k ~ 'V~(q, k; E) '#(k),  
o 

1 [ dk k~[~V~(q, k; E) '~#(k) + "V'(q, k; E) ~'#(k)l, '~#(q) = E -  2e-------~ a 

34¢,(q) = E-12E---~ f dk k2166V'(q, k; E) ,2~(q, k) + 34V'(q, k; E) 34~'(k)1 
o 

(D.9a) 

(D.9b) 

(D.9c) 

where for VJ(E) we apply the notation introduced in eqs. (C.10) and (C.12) and where for the wave 
functions we use the following definitions: 
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Spin singlet 

1 
°0'(q ) = ~ [¢J(q , ++)- 0 ' ( q , - - ) 1 .  (D.10a) 

Uncoupled spin triplet 

1 'q/(q) = - ~  [OJ(q, + - ) -  ¢'(q,-+)]. (D.lOb) 

Coupled triplet cases 

,2q/(q) _ ¢~(q, ++)  + 0 '(q,  - - ) ,  3'0J(q) - OJ(q, + - )  + O~(q, - + ) .  (D.10c) 

The two coupled equations (D.9c) represent for J = 1 the deuteron problem. The two wave functions 
resulting from a solution can be represented in LSJ basis by 

i(-1+1) 
¢~-~(q) = [2(2J + 1)] "2 [97 ~OJ(q) + JV7-Ci 340J(q)], (D.11a) 

i(-J-1) 
q/~+1(q) = [2(2J + 1)] l~z [ -  JVT-+-1,20.t(q) -t- V"] 34~/(q)] ,  (D.11b) 

where we used eq. (C.18) and the definition i L O~.(q)- (JMLSI O(q)). For the deuteron (J = 1) eq. 
(D.11a) represents the S-wave and eq. (D.11b) the D-wave. 

D.2. Deuteron properties 

In terms of the momentum space S- and D-waves from eq. (D.lf),  now denoted by 00(q) and ~b2(q), 
respectively, the deuteron properties are (note that throughout this work we use units such that 
h = c = 1; conversion factor: hc = 197.3286 MeV. fro): 
Normalization 

fdq qZ[(Oo(q)) 2 + (02(q)) 21 = 1, 
o 

(D.12) 

D-state probability 

oa 

PD-  l dq q2(¢2(q))2. 
o 

(D.13) 

The probability for non (-pure) nucleonic components in the deuteron wave function, P~, is evaluated 
by [152] 
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P°-- 3E (q'dlv(e)l~d>lE=E~ = ae  e(E)le=e~' (D.14) 

with ~b d the deuteron wave/function, E~ = 2m - e d and e(Ed) = E d. 
Magnetic moment 

/z d =/zp + / z , -  ~[/~p + / ~ . -  ½]PD, (D.15) 

with 

~p = 2.79290, /~, = -1.91315, (D.16) 

the magnetic moments of proton and neutron, respectively, in units of nuclear magnetons [108]. 
The quadrupole moment operator for the deuteron is expressed in terms of the relative distance r 

between proton and neutron and its third component z 

Qd = 1( 3z2 - r2) = lr2p2(cos tg) = (~r/5)lZ2r2y~(o, ~o). (D.17) 

Using the conventional configuration space wave functions one obtains 

Qd = ½ f dr r2w(r)[V'gu(r)- w(r)], 
0 

(D.18) 

with u(r) and w(r) the wave functions for l = 0 and l = 2, respectively, normalized according to 

i dr[(u(r)) + (w(r)) 2] = 1. 
o 

(D.19) 

By Fourier transformation of the r-space wave functions and with the help of the spherical Bessel 
.~quation, Qd is expressed in terms of the momentum space wave functions 

oo 

Qd=- @ f dq{V~[q2 d~b0(q) d~b2(q)+ 3q~b2(q) d*0(qi] 
dq dq dq J 

o 

+ ,t"2/d~b2(q) ~ 2 \ ~ ]  + 6(~b2(q)) 2} 

(D.20) 

I'o avoid ambiguities in formula (D.20) and in the following considerations, we have fixed the sign of 
:he wave functions arbitrarily such that they are always positive for low momenta. 

For some deuteron properties the r-space wave functions are required. Therefore we Fourier- 
:ransform ~0(q) and ¢2(q) into r-space by performing the following numerical integration 

c o  

r q2 dq jL(qr) ~bz(q), (D.21) 
o 
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with Jr. the spherical Bessel function, L = 0 or 2 and 

u(r )  , w ( r )  . 

The normalization is given in eq. (D.19). In terms of these configuration space wave functions the 
asymptotic S-state, As, is 

u(r)---~. A s e -'r (D.22) 

and the asymptotic DIS state, r I (denoted by D/S in our tables), 

w(r)~-~-:>~ms( l+3-~r + ( a ~ )  e-"r , (D.23) 

with a = (med) v2= 0.231609 fm -I. The root-mean-square radius for the deuteron is 

rd= [ i  drr2((u(r))2 + (w(r))2)] m . (D.24) 
0 

D.3. The deuteron wave functions 

D.3.1. The ansatz for the parametrization 
In some applications it is useful to have the deuteron wave functions in analytic form. Therefore, we 

present a parametrization of the deuteron wave functions of our full model (section 8) as well as of the 
energy-independent OBEP (section 9.1). We use a discrete superposition of Yukawa-type functions, 
similar to ref. [153]. The ansatz for the analytic versions of the r-space wave functions, denoted by ua(r ) 
and wa(r), is 

nu ( 3  3) 
u,(r) = ~. Cj exp(-mir), w~(r) = • D r exp(-mir) 1 + + j=x j=l mjr (mjr)2 . (D.25) 

The normalization is given in eq. (D.19). 
The corresponding momentum space wave functions are 

2, ~O~(q) \-~/ .= q2+mj  ~°°(q) x~/  .= .q2+mj 

which is the analytic result of the Fourier integration 

~f~fdrrjt.(qr)q~(r), 
0 

(D.26) 

(D.27) 

with q~g(r)= ua(r ) and q~(r)= wa(r) for L = 0 and 2, respectively. The momentum space wave 
functions eq. (D.26) are the analytic'versions of eq. (D.11) with the normalization eq. (D.12). The 
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Table 10 
Coordinate-space deuteron wave functions u(r) and w(r) obtained from our (energy-dependent) full' model; 

.1"~' dr[u2(r) + w2(r)] = I 

67 

r (fro) uCr) w (d r (fro) uCr) w(d 

0.10000 - 01 0.16321 - 01 -0.47979 - 03 0.27000 + 01 0.46411 + 00 0.10571 + 00 

0.20000 - 01 0.26634 - 01 -0.64419 - 03 0.28000 + 01 0.45556 + 00 0.10167 + 00 
0.30000 - 01 0.37144 - 01 -0.81153 - 03 0.29000 + 01 0.44691 + 00 0.97690 - 01 
0.40000 - 01 0.45513 - 01 -0.12124 - 02 0.30000 + 01 0.43820 + 00 0.93798 - 01 
0.50000 - 01 0.52425 - 01 - 0 . 1 7 5 3 0 -  02 0.32000 + 01 0.42079 + 00 0.86330- 01 

0.60000 - 01 0.58495 - 01 -0.22129 - 02 0.34000 + 01 0.40358 + 00 0.79344- 01 
0.70000 - 01 0.63775 - 01 -0.26426 - 02 0.36000 + 01 0.38670 + 00 0.72867 - 01 

0.80000 - 01 0.68237 - 01 -0.30763 - 02 0.38000 + 01 0.37024 + 00 0.66894 - 01 

0.90000 - 01 0.71943 - 01 -0.35476 - 02 0.40000 + 01 0.35429 + 00 0.61417 - 01 

0.10000 + 00 0.75085 - 01 -0.40330 - 02 0.42000 + 01 0.33887 + 00 0.56411 - 01 

0.20000 + 00 0.92615 - 01 -0,71908 - 02 0.44000 + 01 0.32401 + 00 0.51836 - 01 
0.30000 + 00 0.10844 + 00 -0.50743 - 02 0.46000 + 01 0.30970 + 00 0.47658 - 01 
0.40000 + 00 0.13541 + IX} 0.28432 - 02 0.48000 + 01 0.29597 + 00 0.43853 - 01 
0.50000 + 00 0.17394 + 00 0.15617 - 01 0.50000 + 01 0.28282 + 00 0.40389 - 01 

0.60000 + 00 0.22117 + 00 0.31737 - 01 0.52000 + 01 0.27020 + 00 0.37228 - 01 
0.70000 + 00 0.27189 + 00 0.49471 - 01 0.54000 + 01 0.25811 + 00 0.34339 - 01 
0.80000 + 00 0.32159 + 00 0.67297 - 01 0.56000 + 01 0.24654 + 00 0.31707 - 01 
0.90000 + 00 0.36694 + 00 0.83924 - 01 0.58000 + 01 0.23548 + 00 0.29311 - 01 
0.10000 + 01 0.40633 + 00 0.98583 - 01 0.60000 + 01 0.22490 + 00 0,27120 - 01 
0.11000+01 0.43907+00 0.11083+00 0.65000+01 0.20043+00 0.22410-01 

0.12000+01 0.46521+00 0.12056+00 0.70000+01 0.17859+00 0.18635-01 
0.13000 + 01 0.48526 + 00 0.12787 + 00 0.75000 + 01 0.15910 + 00 0.15565 - 01 
0.14000 + 01 0.49983 + 00 0.13296 + 00 0.80000 + 01 0.14174 + 00 0.13077 - 01 
0.15000+01 0.50967+00 0.13611+00 0.85000+01 0.12626+00 0.11028-01 

0.16000+01 0.51560+00 0.13760+00 0.90000+01 0.11247+00 0 .93422-02 

0.17000 + 0 1  0.51836, + 00 0.13772 + 00 0.95000 + 01 0.10018 + 00 0.79457 - 02 
0.18000+01 0.51851+00 0.13671+00 0,101~0 + 02 0.89232-01 0 .67748-02 
0.19000 + 01 0.51660 + 00 0.13481 + 00 0.10500 + 02 0.79478 - 01 0.58021 - 02 
0.20000 + 01 0.51305 + 00 0,13222 + 00 0.11000 + 02 0.70792 - 01 0.49785 - 02 

0.21000 + 01 0.50821 + 00 0.12911 + 00 0.11500 + 02 0.63055 - 01 0.42813 - 02 
0.22000 + 01 0.50235 + 00 0,12562 + 00 0.12000 + 02 0.56158 - 01 0.36950 - 02 
0.23000 + 01 0.49569 + 00 0.12185 + 00 0.12500 + 02 0.50020 - 01 0,31932 - 02 
0.24000 4- 01 0.48340 + 00 0.11791 + 00 0.13000 + 02 0.44553 - 01 0.27623 - 02 

0.25000 + 01 0.48062 + 00 0.11387 + 00 0.13500 + 02 0.39679 - 01 0.23981 - 02 
0.26000 + O1 0.47249 + O0 0.10979 + 00 0.14000 + 02 0.35339 - O1 0.20841 - 02 

Data files for these wave functions in r- as well as in q-space are available from the authors. 

Table 11 
Coefficients for the parametrized deuteron wave functions of 
the (energy-dependent) full model. The last Cj and the last 
three D i are to be computed from eq. (D.28) (n, ffi n,, = 11) 

cjCfm -''2) oj(~ -I'2) 
0.90457337 + 00 0.24133026 - 01 

-0.35058661 + 00 -0.64430531 + 00 

-0.17635927 + 00 0.51093352 + 00 

-0.10418261 + 02 -0.54419065 + 01 

0.45089,139 + 02 0,15872034 + 02 

-0.14861947 + 03 -0.14742981 + 02 

0.31779642 + 03 0.44956539 + 01 

-0,37496518 + 03 -0.71152863 - 01 

0.22560032 + 03 eq. (D.28) 

-0.54858290 + 02 eq. (D.28) 

eq. (D.28) eq. (D.28) 
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boundary conditions ua(r)~ r and wa(r)~ r 3 a s  r ~  0 lead to one constraint for Cj and three constraints 
for D i, namely 

n u - I  

co=-Z q, 
]=1 

m 2 n~ 
nw-2 ( _ m  2 m 2 3 D/  

D.._2 = ( m 2 w  2 2 - -  m 2 i = l  --~mi ' - m . w - 2 ) ( m . ~ - i  .+-2) \ .~,-i "w 

nw-3 nw-3 

+(m2""-t + m2w)~t'= D i -  ./=t ~ Dim~), (D.28) 

Coordinate-space 

Table 12 
deuteron wave functions u(r) and w(r) obtained from the (energy-independent) relativistic 

momentum space OBEPQ (see section 9.1); So dr[u2(r) + w:(r)] = 1 

r (fro) "(d w(r) r (Ira) u(r) w(~) 
O. 10808 - O1 0.28698 - 02 0,76083 - 05 0,27000 + Ol 0.45772 + O0 O, 10780 + O0 

0,20000 - O1 0.57125 - 02 0.36385 - 04 0,28000 + Ol 0.44902 + O0 O. 10331 + 08 
0,30000 - O1 0,85499 - 02 0,42535 - 04 0.29000 + O1 0,44026 + O0 0.98942 - O1 
0.40000 - 01 0,11414 - O1 -0.40792 - 05 0.30000 + O1 0.43148 + O0 0.94715 - O1 

0,50000 - Ol 0,14295 - O1 -0.50366 - 04 0,32000 + O1 0.41401 + 08 0.86710 - O1 
0,60000 - Ol O, 17162 - 01 -0,42507 - 04 0.34000 + 01 0.39682 + O0 0.79302 - 01 
0.70000 - O1 0.20020 - Ol -0.10325 - 04 0.36000 + O1 0,38002 + O0 0.72515 - O1 
0,80000 - O1 0,22890 - O1 -0.76468 - 05 0.38000 + 01 0,36370 + O0 0.66333 - Ol 
0.90000 - Ol 0,25778 - 01 -0,33183 - 04 0,40000 + 01 0,34792 + O0 0,60700 - Ol 
0,10080 + O0 0,28679 - Ol -0.59642 - 05 0.42000 + 01 0.33268 + O0 0.55581 - 01 

0.20000 + O0 0.58968 - Ol -0,50538 - 03 0.44000 + 01 0.31802 + O0 0,50942 - 01 
0,30000 + 08 0.94182 - Ol -0.13195 - 02 0.46000 + Ol 0.30393 + O0 0,46735 - O1 

"0.40000 + O0 O. 13752 + O0 -0,14398 - 02 0.48000 + O1 0.29042 + 08 0.42917 - O1 
0.50000+00 0,18942+00 0.14858-02 0.50000+01 0.27746+00 0.39448-01 

0,60000 + O0 0.24647 + O0 O. 10337 - Ol 0,52000 + Ol 0.26504 + 08 0.36302 - O1 
0.70008 + O0 0.30335 + O0 0.26043 - O1 0.54000 + O1 0.25316 + O0 0.33446 - O1 
0.80000 + O0 0.35552 + 08 0.46762 - Ol 0.56000 + O1 0,24180 + O0 0.30848 - O1 
0.90000 + O0 0.40042 + O0 0.69199 - O1 0.58000 + Ol 0.23092 + O0 0,28478 - O1 
0.10008 + Ol 0.43751 + O0 0,90401 - O1 0.60000 + Ol 0.22052 + O0 0,26317 - O1 

0.11008+01 0.46591+00 0..10857+00 0.65000+01 0.19650+00 0,21716-01 
0.12000401 0.48747+00 0.12295+00 0.70000+01 0.17506+00 0.18019-01 
0.13000+01 0.50286+00 0.13348+00 0,75080 + 01 0.15595+00 0.15046-01 

0.14000+01 0.51313+00 0.14053+00 0.80000+01 0.13891+00 0.12621-01 
0.15000+01 0.51919+00 0,14468+00 0.85000+01 0.12373+00 0.10645-01 
0.16000+01 0.52190+00 0,14646+00 0.90000+01 0.11021+00 0.90087-02 

0.17000 + 01 0.52194 + 00 0.14636 + 00 0.95000 + 01 0.98161 - 01 0.76615 - 02 
0.18000+01 0.51988+00 0.14484+00 0,10000+02 0.87430-01 0 .65320-02 

0,19000 + 01 0.51614 + 00 0.14226 + 00 0.10500 + 02 0.77870 - 01 0,55910 - 02 
0.20000 + 01 0.51111 + 08 0.13892 + 08 0.11008 + 02 0.69356 - 01 0.47980 - 02 

0.21000 + O1 0.50508 + O0 0,15031 + O0 0.11500 + 02 0.61773 - O1 0.41263 - 02 
0.22000 + 01 0.49826 + 00 0.13077 + 00 0,12000 + 02 0.55017 - 01 0.35606 - 02 
0.23000+01 0,49085+00 0.12627+00 0.12508+02 0.49002-01 0 .30758-02 
0.24000 + O1 0.48298 + O0 O. 12166 + O0 0,13000 + 02 0.43644 - O1 0.26628 - 02 

0.25000 + Ol 0.47477 + O0 O. 11701 + O0 0.13500 + 02 0,38870 - O1 0.23112 - 02 
0.26000+01 0,46633+00 0.11238+00 0,14000+02 0.34621-01 0 ,20065-02 

Data files for these wave functions in r- as well as in q-space are available from the authors. 
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Table 13 
Coefficients for the parametrized deuteron wave functions 
of the (energy-independent) relativistic momentum space 
OBEPQ. The last C i and the last three Dj are to be 

computed from eq. (D.28) (n, = n,. = 11) 

c~ (~m-":) o~ (rm-":) 

0.88628672 + 00 0.239.237078 - 01 
-0.27591814 + 00 -0.52115578 + 00 
-0.11610727 + 00 -0.57197401 + 00 
-0.12975243 + 02 0.27570246 + 01 

0.77490155 + 02 -0.26157324 + 02 
-0.27298039 + 03 0.84419883 + 02 

0.53402693 + 03 -0.98308997 + 02 
-0.56328069 + 03 0.38498490 + 02 

0.30214616 + 03 eq, (D.28) 
-0.64920925 + 02 eq. (D.28) 
eq. (D.28) eq, (D.28) 

and two other relations deduced by circular permutation of n w - 2, n,, - 1, n,,.. The masses m r are then 
chosen to be m r = a + ( j - 1 ) m  o, with m o =0.9 fm -t and ot (reed) 1/2-- 0.231609 frn -1. This choice 
ensures the correct asymptotic behaviour. We use n,, = n w = 11. 

D.3.2. The wave functions for  the full model 
The r-space wave functions for our full (energy-dependent) model for the NN interaction (section 8) 

are tabulated in table 10. The coefficients of the parametrization defined in appendix D.3.1 are given in 
table 11. The accuracy of our parametrization is characterized by 

(f )1,2 (f )1,2 
I s = dr[u(r) - u,(r)] 2 = 9.5 x 10 -4 , I D = dr[w(r) - wa(r)] 2 = 23.6 x 10 -4 

o o 

(D.29) 

This parametrization reproduces well the theoretical deuteron properties listed in table 3. Note that the 
wave function as given in tables 10 and 11 is normalized to unity. The probability for the non (-pure) 
nucleonic components is 3.79%. For some applications it may appear appropriate to "renormalize" the 
wave function accordingly. This is intimately related to the energy-dependence of the potential (see also 
footnote to table 3 and eq. (D.14)). 

D.3.3. The wave functions for  the energy-independent OBEPQ 
Alternatively we list in table 12 the r-space wave functions from the (energy-independent) relativistic 

momentum space OBEPQ presented in section 9.1, with the deuteron properties given in table 6. The 
coefficients for the parametrization explained in appendix D.3.1 are presented in table 13. The accuracy 
is similar to eq. (D.29). The original deuteron properties predicted by this OBEP are well reproduced 
by the analytic wave functions. (Note that in this case we have ~ = (me,~) ~2 = 0.231607 fm-a.) 
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Appendix E: Relativistic momentum space OBEP (OBEPQ) 

The momentum space OBEP presented in this append~ will be constructed in the framework of the 
relativistic three-dimensional Blankenbecler-Sugar (BbS) [64] reduction of the Bethe-Salpeter (BS) 
[63] equation. First, we shall briefly sketch the scheme of that reduction (more can be found in refs. [51] 
and [154]) and then we will present the explicit momentum space expressions defining that potential. 

E.1. The BbS equation 

E.I.1. The derivation 
The full BS equation may be written in operator form by 

= f, + f'o  (z .1)  

with/~/the invariant amplitude for the two-nucleon scattering process, 17 the sum of all connected 
two-particle irreducible diagrams and G the relativistic two-nucleon propagator. Relativistic three- 
dimensional equations are typically derived by replacing eq. (E.1) by the following equivalent set of 
equations 

/~/= 1~ + Wg~/, (E.2a) 

¢¢= + ¢ (o  - (E.2b) 

where g is a covariant three-dimensional propagator. In general, the second term on the r.h.s, of eq. 
(E.2b) is left out to obtain a true simplification of the original equation (E.1). Many different choices 
for g have been proposed [154]. 

To demonstrate the BbS suggestion [64] more clearly we write out the BS equation (E.1) in the c.m. 
frame 

#l( q'; ql P) = V( q'; ql P)+ f d4k ~'( q'; k I P)G(k] P)~/(k; q lP ) ,  (E.3) 

with 

i 1 
G(kIP)= (2~r) 4 [½)x+ jd_m+ie]O)[½fl'_y_m+ie](2), 

where q, k and q' are the initial, intermediate and final relative four-momenta, respectivel3~, and P is the 
total four-momentum in the c.m. frame; P = (-v~, 0) with v'g the total energy. The superscripts refer to 
particle (1) and (2). The notation is as in Bjorken and DreU [145]. The individual four-momenta of the 
two particles in the c.m. frame are ½P --. q, ½P _ k and ½P + q' for the initial, intermediate and final 
state, respectively. Note that 17' and M are 16 x 16 matrices in spinor space which, when sandwiched 
between Dirac spinors, give the corresponding matrix elements. 

The BbS choice for the covariant three-dimensional propagator is 

g(k, s) = 6(ko) o#(k, s), (E.4a) 
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with 

1 m 2 A (~) k A (2) k +() +( - )  
g(k's)=(21r)3 Ek ~s--E2k+ie ' (E.4b) 

where A~ ) (i = 1, 2) are the covariant2Positive energy projection operators for the two nucleons in 
intermediate states and E k - ~ .  Replacing G in eq. (E.3) by the expression eq. (E.4a) we 
obtain the BbS equation 

q'; 0, q = f'(0, q'; 0, q) + f d3k V(0, q'; 0, k)~,(k, s) M(O, k; O, q I (E.5) ~/(0, 

in which the two nucleons are equally off their mass shell. The total c.m. energy is 

x/'g= 2Eq , (E.6) 

with Eq - ~/m 2 + q2. Inserting this in the propagator g and omitting unnecessary arguments, we obtain 
for eq. (E.5) 

f m2 V(q"k)a~)(k)a~)(-k) M(k,q) (E.7) 
JQ(q" q) = IT'(q" q) + d3k "~k q2 _ k 2 + ie 

Defining 

iQ( q', q) = ~ ~ l (  q', q)~/m/Eq , }'( q', q) = ~ f f f  q', q)V'-m-~q , (E.8) 

which has become known by "minimal relativity", eq. (E.7) can be cast into the form 

f /~(k, q) (E.9) 
A~)(k) A~)(-k) 

IQ(q',q)=}'(q',q)+m d3k}'(q',k) q2_k2+ie 

Taking matrix elements of eq. (E.9), we obtain an equation for the scattering amplitude T. Its form is 
identical to the familiar nonrelativistic Lippmann-Schwinger equation, in spite of the fact that we do 
have a relativistic, covariant equation. Using eq. (C.1) we obtain the R-matrix equation 

f V(q', k) R(k, q) R(q' ,q)=V(q' ,q)+mP dak q~--~- , (E.10) 

where spin and isospin dependences are suppressed, as before. 

E.I.2. The particular features of the BbS equation 
The similarity of the BbS equation to the nonrelativistic Lippmann-Schwinger equation is one of its 

great virtues. This allows to apply a potential, which is derived from relativistic meson theory, in 
conventional nonrelativistic nuclear structure physics without any technical problems. 
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Another point to be discussed is meson retardation. Due to eq. (E.5) BbS ignores meson retardation 
completely, i.e., the meson propagator (for a scalar meson) in the framework of the BbS equation is 

-1  
( q , _ q ) 2 + m 2  • (E.1i) 

As explained in section 3 and appendix B.2 this neglect of retardation enhances the meson propagator, 
particularly in the case of pion exchange. A correct treatment of meson retardation, as done in 
time-ordered perturbation theory, leads to the meson propagator 

~ , ( E q _ E q _ ~ k ) ,  (E.12) 

with to k = ~ ( q ' -  q)2 + m2. 
However, all other known three-dimensional reductions of the BS 

contribution even more than BbS. For example the meson propagator 
equation enhance the pion 

(Eq, - Eq) 2 - ( q' - q)2 _ m2 (E.13) 

used by Schierholz [155], Gross [156] and also in part of our former work [51] increases the tensor force 
due to the pion even more strongly than BbS. In fact, the additional term in eq. (E.13) has an effect 
which is exactly opposite to that of the correct retardation. (Note, that Eq. = ~m2+ q,2 and Eq = 
,X/r~ + q2 are on-mass-shell energies which ai'e untypical for intermediate states.) This is also evident 
from ref. [154] (see fig. 5, therein: the curves closest to BS, namely E and F, denote the results for BbS 
and Thompson [128], respectively, both having the meson propagator eq. (E. 11)). The conclusion is: if 
a simplification concerning the meson propagator has to be done anyhow (to achieve energy independ- 
ence), to simply ignore the retardation h la eq. (E.11) is probably the best choice. 

E.I.3. R-matrix and deuteron equation 
Equation (E.10) represented in a helicity state basis reads 

( q'A[A~[R(E)IqA1A ~) = ( q'A~A~IVIqA~A~) 

+m ~ P f  d3k q ¢ - k  2 ( q'A'~A~lVlkh~h2)(kh~h2lR(E)lqA~A2) . 
h l,h2 

(E.14) 

The further partial wave decomposition proceeds exactly as in appendix C.1 except that the two- 
nucleon propagator used there, namely 1 / (E-2Ek) ,  has to be replaced by m/(q 2 -  k2). The 
phase-shift relations, appendix C.2 eq. (C.14), are now (for the case of spin singlet) 

tg °8'(E, ab) = -- ½~'qm °R'(q, q; E) (E.15) 

(with q -= Iql) and analogously for the other cases; i.e. in eq. (C.14) Eq has to be replaced by m. This is 
the nonrelativistic phase-shift relation. The fact that seemingly a nonrelativistic relation applies here is 
due to the factors of "minimal relativity", see eq. (E.8). Recalling that 
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m 
R(q, q; E )=  ~qq/~(q, q; E) 

with/~ an invariant matrix element we can rewrite eq. (E.15) by 

2 m o/ J( 
tg °6~(E, ab)= -½~'q ~'q q, q; E) 

(E.16) 

(E.17) 

which is the relation required for relativistic elastic unitarity. 
Note that in time-ordered perturbation theory (appendix B and C) we have for the relationship 

between the R-matrix and the invariant matrix element 

m 2 
R( q, q; E) = --~ R( q, q; E) . 

E q  
(E.18) 

Together with the phase shift relation eq. (C.14) one again obtains eq. (E.17). The difference between 
eqs. (E.16) and (E.18) is due to a different normalization of the Dirac spinors (compare eq. (B.2) and 
eq. (E.25) below) and "minimal relativity". This difference should be kept in mind when the 
expressions following in appendix E.2 are used for an OBEP in time-ordered perturbation theory (e.g. 
that given in appendix B.2, table 8). 

The deuteron equation is 

-m E f d3k(qA1A2lVlkhlh2)(kh~hzlq~) (qX ,h [ 4,)- q2 + q2 h,,h2 (E.19) 

with q2 =_ reed, where e d is the binding energy. Again, the partial wave decomposition proceeds 
analogously to appendix D.1 replacing I / (E  - 2Eq) by - m / ( q  2 + q2). All formulae of the appendices 
D.2 and D.3 apply unaltered. 

E.2. The relativistic momentum space OBE contributions 

The potential V to be applied in eqs. (E.14) and (E.19) is defined as the sum of one-boson-exchange 
contributions 

v= X v (E.20) 

which we will give now explicitly. 
The vertices have been given in appendix B, eq. (B.4) (conventions and notations of Bjorken-Drell 

[145]). (A relativistic momentum space OBEP using the pseudo-vector coupling consistently for 'rr and 
"q, which is important for relativistic nuclear structure physics, is published in ref. [129].) 

E.2.I. The OBE amplitudes in plane wave helicity states 
The Lagrangians mentioned, lead to the following one-boson-exchange contributions (notation as in 

fig. 22) in plane wave helicity states*: 

* Note that according to canonical Feynman rules there is an additional factor of i for each vertex and each propagator; furthermore, the 
potential is defined as i times the amplitude. As i 4 = 1 we do not bother with factors of i from the beginning. 
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q,~,~21v'p, Iq,~,,~) = (2rr)3 ('~_--q)2 + m2p, 

× ff(q', A~)i~,Su(q, AI) ff(-q', A~)i'},Su(-q, As), 

, , ,  oae g: ~ q .  ,~'~q F:[(_q'-q) ']  
(q AtA2[V, IqA, A2) = (2~r)3 (~7_ q~+m~ 

Xa( q', A;) u( q, At) a(-q', A~) u(-q, A2), 

, , ,  o ~ E  1 f-~q ~q~q F2,,[(q'-q)2] { 
( q x~x2lv~ Iq,~x~) = (-~)3 i - ~ - q :  + m ~ (g,, + fv) ff( q', A't) y~,u( q, A~) 

/, 
2m ff(q'' A;)[(q' + q)~, +(Eq, 

x{(g v + f,) ff(-q', A~) ~,"u(-q, 

/, 
2m a(-q' ,  ,x~)[(q' + q),, + (Eq. 

_ e ~ ) ( g o  _ ~',, o)1 uCq, a,)} 

_ Eq)(g~,O _ ~,,,y0)] u(-q, A2) } . 

(E.21) 

(E.22) 

(E.23) 

The form factor applied to each vertex is 

J 2  2 ~ n  a 
/la -- n l  a 

F,[(q' - q)2] = aS, + ( q ' -  q)~/ . (E.24) 

Note that in this appendix dealing with covariant perturbation theory, we normalize the Dirac spinors 
by 

ff(q, A)u(q, A)= l .  (E.25) 

(This is in contrast to appendix B.) In the case of the vector bosons, the Gordon decomposition has 
been used [145]; off-shell terms are not dropped in eq. (E.23). 

In the propagator for vector bosons 

-g~,,, + k~,k,,Im2,, 
2 ~ _ ( q ,  _ q)2 _ m,  

(E.26) 

the k~,k,, term which vanishes on-shell anyhow, is omitted. The off-shell effect of that term was 
examined in ref. [52] and found to be unimportant. 

The final goal is to have the V°~ ~E represented in partial waves, since NN phase shifts are only 
defined in such terms and nuclear structure calculations are conventionally done in an LSJ basis. 
However, before this partial wave decomposition can be done we need the V °hE in a more explicit 
form, particularly with r/egard to their angular dependence. 

The Dirae spinors in' helicity representation are (ef. ref. [51]) 
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) u( q, A,) = V'-'~m 2A,qI(Eq + m) I,h), 

, f~q+m ( 1 m))[A2 ) u(-q, As)= V 2m 2A~ql(Eq + 

(E.27) 

(q -= [ql, Eq = ~ q2) and correspondingly for the primed arguments. Choosing q along the z-axis 
and q' in the xz-plane we have 

IA,) = x^,, l,h) = X-a  2 , ( E . 2 8 )  

IA',) = exp(-~ o's,O)Xa,, IA~)= exp(-~ o-,0)X-a~, (E.29) 

with 0 the scattering angle. ]AI ')) (i = I, 2) is the eigenstate of the helicity operator for the ith particle 
with unit momentum/~, 

= A, I,~, >, ( E . 3 0 )  

and k'~ is the conventional Pauli spinor 

½ ~,X, = KX,. (E.31) 

With the Dirac spinors eq. (E.27) and the representation of the y-matrices as given by Bjorken-Drell 
[145], we obtain V °BE more explicitly: 

( q"7--_ -~i +'-~, 

W'W(2A_L q 2A;q' (2~q 2A'-'" 
2 q  , I ×T~-m ~ ~ W V:' )~W ~ ) < ~ 1 ~ , ~ > ,  (E32) 

(q A,A2IV, Iq'h'h) = (2~.)3 - - - -  (q,_q)Z +m[ 

W'W(1 4q'qA:A')( 1 4q'qA~A2~l,,,,, . 
x'T~-m~ W'W ~ /,^t^~l A, A2) (E.33) 

For vector boson exchange the potential is the sum of three terms {V°Sr~= V°W~+ V°SE+ ,,,,osB,~. 
' ~ - -V  - -VV  - -  - - I I  - -  - -V l  I '  

~ ' ~  , E ,  ( q ' - q ) 2 + m  2 " 

x-~m2 1 + WW ~ 1 + WW' /(,q,~;I,h,h) 

Iq~, q'~;~(q~ ~ (,~;,~&lo',-o-~l~,,~)], -41,--if-- + w' : ~ w + w ) (E.34a) 
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2 2 r 2 

(27r) 3 (--(-- q)5 + m2 ~ 

x 4m 2- 1 +  ~ ) ~ 1 +  W ' W  / 

Eq, + Eq ( 1 -  16q'2q2h;hlh;h2"~ 
2 m ~ / 

+(1 4q'qh'lhl)(1 4q'qh2h2] 3(Eq,Eqq- M2)'~ - q'qcos ,9](/V,1~[/~1/~2) 
W ' W  ~ / 2m 2 

' '  2q~z) Eq , -Eq(4q 'Z~  4qZAiA2 ~ [(2q'h'~ 2q)h](Zq')t ~ + + \ W '2 
-LC-~ + w /~ w'  w l ~ ~ l  

(Eq,- Eq)2 ( 2q'A; 2qA 1 ](2q'A 2 
~7. 7 ~ w'  w J ~  w'  

2 r 2 

q alazlVv, IqAla2)- (2~)3 ;--;--'-,~- :---'2 
~ q - q) ± m v 

W'W ([ W'.~ W 16q'2q2h'lh'2hlh2 
× 4m~-7-- W,2 W 2 

2q 2)] } 
W (A~A2[~I" ~2IAaA2) ' 

(E.34b) 

Eq,  + E q  - 2m 1 
m (/V1"~2 [ A1}~2) 

' '  2qh2] Eq,-Eq 4q'2A;h2 4q2alhz]] [( 2q'a: 2qa 1"]( 2q'h 2 + + ( 
-L \  W' 4- W / \  W' ~ /  2m- W-~ W 2 /J 

X (/V1/~] O" 1 " IT2I/~1/~2) }. (E.34c) 

In eqs. (E.32)-(E.34) the abbreviations W= Eq + m, W '=  Eq,-F m are used. Denoting the angle 
between q and q' by ,9, the helicity state matrix elements needed are: 

f r 1 t /~21 COS -- (ht ,~2[  h x h 2 )  = {[A~ + hi[  c o s  1 ,9 + (h'l  - h i )  s in  ~ ,9 } {1 A2  + ½ , 9 -  (h~ h2)  s in 1 ,9}  , 

(A~A~Ial • ~21AIA2) 
1 t = -{(h~ + AI) sin ½,9 + IA'I- A~I cos ~,9}{(A 2 + A2) sin ½,9-IA 2 - A21 cos ½,9} 

-{IA'I + AI[ sin 1 0 -  (A'~- A1) cos ½,9}{[A~ + All sin ½,9 + ( a ; -  Az) cos ½,9} 

- ( ( a ;  + a~)cos ~ ,9-  I~'~- a~l sin ~,9 }{( a; + a2)cos ½,9 + la ; -  a21 sin ~,9 }. 

Equations (E.35) and (E.36) are easily verified by using eqs. (E.28) and (E.29) 

(E.35) 

(E.36) 
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E.2.2. Partial wave decomposition 
The partial wave expansion of V is 

(q'A~A2[VIqAIA2) ~ (~' , , , , , , , : q )tlA2[JMl~1A2)()tl)t21V (q', q)[AIA2)(JMAIAzI4AIAz), 
JM 

(E.37) 

with the transformation matrix elements given in eq. (C.5). The transformation coefficients are 
considerably simplified by using the addition theorem for rotation matrices and by choosing q along the 
z-axis and q' in the xz-plane: 

1 ~ (2J + 1)d~a,(O)(a'la~lV' (q', q)IA1A2), (E.38) 

with A = A 1 - A  2, A '=  A' 1 -A~ and d~,,(,9) the reduced rotation matrices (Jacobi polynomials). They 
satisfy 

d(a,(O)=d'a, a(,9) = (-)*-a'd(,a09) (E.39) 

and the orthogonality relation 

+1 

f 
-1  

2 
d ( c o s  = 2 J  + 1 " (E.40) 

Using (E.40), (E.38) can be inverted to obtain 

+1 

( A[A21V' (q', q)l AIAE) = 27r f d(cos ~9) d~a,09)(q'A'IA2IVIqAIA2). 
-1  

(E.41) 

This is the basic formula for the representation of the V °de in partial wave helicity states. 
As discussed in appendix C.1, due to the special symmetry properties of the nuclear force, only six 

helicity amplitudes are independent. Furthermore, six linear combinations of these amplitudes are of 
particular practical interest, see eqs. (C.10) and (C.12) (with R to be replaced by V). 

When evaluating these six partial wave amplitudes for the OBE potentials eqs. (E.32)-(E.34) by 
applying eq. (E.41) one obtains products of reduced rotation matrices and trigonometrical functions. 
These can be expressed in terms of the more convenient Legendre polynomials, /':(cos ag), namely 

d o(O) = P , ( c o s  

J + l  J 
(I +cos O) d~(O) = P, + ~ P,-I + ~ P,+x 

J 1 
= ej-}-  ~ COSI~ Pj  q- ~ e j - 1  , 
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J + l  J 
(1-cos O) d _ n ( O ) = - P , +  ~ P~_, + ~ P,+, 

J 1 
=-P' +T4T c°s° e" + 7 ~  e,-1, 

sin O d~0(O) = -s in 0 d~1(O) = VTU + 1) 2 J + l  (ej+l -PJ- I )  

= ~ (cos ,o P,-  e,_,), 

(E.42) 

where the argument of Pficos O) is mostly suppressed. These expressions in conjunction with eq. 
(E.41) give rise to the following integrals: 

+1 

f Ps(t) 1 I~°)(m~)- dt 2 = ~ Qs(z~,), 
-I (q, _ q)2  + m. 

(E.43) 

with t = cos O, z, = (q,2 + 112 + m2)/2q,q and Qj(z~) the Legendre functions of the second kind [157] 
(Qo(z~) -- ½ ln[(z~ + 1)/(z,, - 1)]). And furthermore 

+1 

f tPfit) _ Q~l)(z~) I~°(m~) =- dt (q ,_  q)2 + m2 .q,q 
-1 

+I  

i~2)(m~) - 1 f JtPs(t) + Ps_l(t) Q~2)(z,~) 
T~--~ _ 1 d t - ~  -_ ~ ~ + -'~ = q , q 

+1 

/~3)(m')- J ~ l  f dt 
- 1  

tPj(t)- Pj_l(t) _ Q~3)(z~,) 
2 ( q ,  _ q )2  + m .  q'q 

+1 
f t2pl(t ) Q~4)(z,,) 

I~4)(m,,)- dt (q, _ q)2 + m~ = q'---~ 
- 1  

(E.44) 

+1 
f jt2pl(t) + tPl_l(t ) Q~5)(z,,) 

. ( s ) ,  , =  1 dt  2 = Zl t,m~,) - j +  1 (q, _ q)2 + m. q'q 
- 1  

+1 f t 2 p J ( t ) - t P J - l ( t )  Q~°(Zc') 
I~6)(m~) - J dt  2 = , 

-1 (q, _ q)2 + m~ q 'q  

with 
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Q5l)(z~)- z sQ , ( z s ) -  81o , Q52)(zs)_ 1 (JZsQ,(z.~) + Q,_,(Zs)) , 

•/ J 
Q53)(zs) - ~ ( z s O ' ( z s ) - -  Q j _ l ( Z s ) ) ,  Q54)(zs)-- zsQS')(z=)- ~sj, , (E.45) 

~ ( 3 )  z_ Q S S ) ( z s ) = z s Q 5 2 ) ( z s ) - 2 3 8 , , ,  Q56)(zs)=zs~dj ( =)+ ½V'28,,. 

Note that the dependence of the I t° on (q', q) is suppressed in our notation. Equations (E.44)-(E.45) 
can be verified with the help of the recurrence relations 

J + l  J 
tP1(t) - 2J + 1 PJ+l(t) + ~ P1-1(t) (E.46) 

and 

J + l  J 
zsa"(Zs) = 2J + 1 a~'+l(Zs) + ~ a'- '(Zs) + a'°" (E.47) 

In numerical calculations there is actually no need to use the Legendre functions of the second kind. 
The integrals, eqs. (E.43), (E.44), can be computed numerically fast and accurately. This has the 
advantage that the cutoffs can be included in the integrand, namely by replacing 

- - - 2  2 x 2n a 1 1 ( .A~ -.m~ 
- ->  

(q, q)2+m2 s . (q ,  2 2 - - q )  +rn s \ ( q ' - q ) 2 + A 2  s] 
(E.48) 

When using the Legendre functions of the second kind the product of propagator and cutoffs (r.h.s. of 
(E.48) for the case of n s = 1) has to be decomposed as 

1 A2,2-m2s 1 A2sa-m2s 1 
+ (E.49) 2 2 2 2 2 2 2 (q, _ q)2 + ms A s , 2  _ As a (q, _ q)2 + As,1 As,2 _ As,1 (q, _ q)2 + As,2 

with 

As. I = A  s + e ,  As. 2=A s - e  and e,~A~ 

(e ~ 10 MeV is an appropriate choice) before the (analytic) integration over cos ~ is done. (For the 
meson propagator of the time-ordered theory, [%(E - Eq, - Eq - tOk)] -~ (compare appendix B), the 
integrals eqs. (E.43)-(E.44) can only be solved numerically.) 

E.2.3. The final OBE expressions 
Inserting eqs. (E.32)-(E.34) into eq. (E.41) and using eqs. (E.35), (E.36), (E.42)-(E.44) we obtain 

the final expressions for the OBE amplitudes in partial wave decomposition. We present these final 
results in terms of the linear combinations of helicity amplitudes which are most relevant to practical 
calculations (for definitions see appendix C, eqs. (C.10) and (C.12)). Only here we abbreviate 
E ' -  eq,, e--- eq. 
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Pseudo-scalar coupling (ps) (rl- and 1r-meson; for ~ multiply with ¢1" ¢2): 

0 J (0) F(1) i~l)(mps)  ) Vps = Cps(Fps /~°)(mps) + - p s  

1 J (0) (1) i~2)(mps)) ' Vps = C p s ( - F p s  /(j°)(mps ) -- Fps 

12V., -F O) (o) i~l)(mp~)) --ps m Cps( ps l(.,°)(mp,) + Fps 
34 J -~ C ( - F  (1) I~°)(mps ) (o) Vps -p s \  - p s  - Fps  /~2)(mps)) ,  

55 .r (2) 
Vps = CpsFp~ I~3)(mps) , 

46 J (2)  
V p s = - C p s f p s  /~3)(mps ) , 

2 

Cps = 4zr 2,n-m 2 

FrO) = E ' E  - m 2 (1) _ (2) _ - m ( E '  - E) . ps , Fps - - q ' q ,  Fps - 

Scalar coupling (s) (o-- and ~-boson; for ~ multiply with cx" ¢2): 

o s Cs(F~O)i~O)(ms) + F(st)i~])(ms)) V S -"~ 

1 .i Cs(F s I,, ( m s ) + F  s I.,, (ms) j ,  V s =  (o) (o) O) (2) _ ~ 

(o)  O )  ~ v~ 12V'= CsCF~l)IS°)Cms) + Fs 1, ("sJ)  - - $  

34 J (1 )  (0 )  vs = C,(Fs b (mJ + 

55V' CsF~2)I~3) (ms)  

C2) Ca) _ x 66V J= CsF s I:  (m 0 , 

with 

and 

C~ = 4w 2wm 2 

F(s °) = - ( E ' E  + m2) ,  -sF(1) = q'q , -sF (2) = m(E '  + E ) .  

(E.50) 

(E.51) 
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Vector bosons (v) (to- and p-meson; for p multiply with 'r~..r2): 
Vector-vector coupling: 

0 J V~ = Cv~(2E'E- m2)I~°)(m~) , 

I J C,,v(E,El(jO)(m,,) + q,qi~2)(m~)), V 
V V  

~ v ~  = Cv~(2q' qI~°)(mv) + m~')(z~))  , 

with 

34VJ = 
- - V V  

55 J V 
V V  

66VJ = 
- - V V  

C~,( q' qI(j°) (mv) + E' EI~2)(m,)) , 

- C,~mEI~3)(m,) ; 

C~ = g~ 1 ~f-~,~ ~f~ 
4~" 7rm 2 

Tensor-tensor: 

o , q,2 q2)(3E, E+ m2)i(O)(mv) v, ,  = c , , ( (  + 

+[q,2 + q2_ 2(3E'E + m2)]q'ql~l)(m,,)- 2-'2-2/(4)" "" q q j ~m~)), 
1 J Vtt= Ctt{[nq,2q2 + (q,2 + q~)(e'e- m2)]I~°)(mv) + 2(e ' e  + m2)q'qI~l)(m~) 

_( q,2 + q2 + 4E,E)q,qlT)(m~) _ 2q,2q2i~S)(m~)} , 

nVJtt = Ctt{[am 2 -  3(q '2 + q2)]q'qI~°)(m~) 

+[6q,2q2- (q,2 + q2)(E'E + 3m2)]I(j1)(mv)+ 2(e ' e  + m2)q'qI(j4)(m~)}, 

34vJtt = ctt{_[q,2 + q2 + 4E,E]I~O~(m~)_ 2q,2q21~l)(m~) 

+[4q,2q2 + (q,2 + q~)(E'E- m2)]I~2)(mv) + 2(E'E + m2)q'qI~5)(m~)} , 

5~vJ C.m([E'(q '2 + q~)+ E(3q '2 q2)]I~3)(m~) 2(E'+E)q'qI~6~(mv)} 
- - t t  ~ ~ - -  

66v~,, = C.m{[E( q'~ + q2) + E , ( 3 q 2  _ q ,2 ) ] i~3 ) (m~)  _ 2(E' + E ) q ' q I ~ 6 ) ( m ~ ) }  , 

with 

C. "f2v 1 ~ ~_~ 
= 4---~ 8,.a.m 4 E '  " 

Vector-tensor coupling. 

o J Cvtm((q,2 + q2)i?(mv)_2q,qi~l)(m~) ) V 
V I  ~ 

1 / 
V v  t = C v t m ( _  ( q , 2  + q2)i~O)(m~)+ 2q,qlT)(m~)), 

81 

(E.52a) 

(E.52b) 
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12V' = C,,tm(6q'qI~°)(m,,)- 3(q'2 + q2)i~l)(m.) ) 
- - V t  

34 V, = C,,tm(2q,qi~O)(m,,) _ ( q,2 + q2)i~2)(m,,)) 
--VI 

(E.52c) 

55 V'  = C,,t(E'q 2 + 3Eq'2)I~3)(mv) 
--vt 

with 

66v'-,,t = C,,t (Eq '2 + 3E'q2)I~3)(m,,) , 

41r 21rm 3 

E.3. Some finat remarks 

The potential OBEPQ is defined by eq. (E.20) with the explicit expressions given in appendix E.2.3 
and the parameters of table 5*. The OBE expressions eqs. (E.50)-(E.52) are represented such that 
they can be applied directly in eqs. (C.13) and (D.9) (with the necessary replacement of the 
two-nucleon propagator according to eqs. (E.14), (E.19)). Alternatively one can also first apply eq. 
(C.21) to the OBE amplitudes and then perform all calculations in the conventional LSJ basis, see e.g. 
ref. [148]• The deuteron wave functions from OBEPO are given in appendix D.3.3. 

For comparison and adjustment of our conventions and units (as stated before, we use units h = c = 1 
and recommend units of MeV for energies, masses and momenta in practical calculations; conversion 
factor: hc = 197.3286 MeV fin) to those used in the work of other authors, we recommend to compare 
the different phase shift relations (ours is given in eq. (E.15))• Also, the partial wave integral equations 
should be compared with regard to all kinds of factors (see ours in eqs. (C.13) and (D.9)). 

If one wants to use the OBE amplitudes presented in this appendix in time-ordered perturbation 
theory (e.g. for the OBEP presented in appendix B.2 and table 8) one has to do the following changes: 
Due to the normalization of the Dirac spinors eq. (B.2) and no factor of "minimal relativity" one has to 
replace 

"-* Eq, Eq 

The off-shell term 

- r,, 7 °) 

in the p-exchange (compare eq. (.E.23)) is dropped by us in time-ordered perturbation theory. 
Therefore the expressions for tensor-tensor and vector-tensor coupling are changed. The correspond- 
ing expressions are published in ref. [52] (appendix A, case 1, therein). 

Appendix F: Coordinate space OBEP (OBEPR) 

The meson exchange contributions given in appendix E depend on two momentum variables, namely 
the incoming and outgoing relative momenta q and q'. A direct Fourier transformation of these 

* A computer code for OBEP0 is available from one of the authors (R.M.). 
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expressions would yield a function of the (relative) in- and outgoing two-nucleon distances r and r', i.e. 
a strongly nonlocal expression; moreover, the transformation cannot be done analytically. Thus, an 
analytic form in r-space can only be obtained after some characteristic approximations in the 
expressions of appendix E. 

We start from eqs. (E.21)-(E.23), but replace the helicity spinors (eq. (E.27)) by spinors 

,m+m( 1 ) 
u(q,s)= ~ 1 ~  (0''q)l(Eq +m) Is), (F.1) 

containing the spin operator 0" and the Pauli spinor Is). Leaving out the states Is) in the resulting 
expressions we have a potential operator with spin operators 0"~ (i = 1, 2) for nucleon i. We then 
introduce new variables 

k = - q ' - q ,  p=-½(q'+q),  (F.2) 

expand the relativistic energies in powers of k 2 and p2 and keep only the lowest order. We then arrive at 
the following formulas: 

pseudoscalar mesons (rr, "q): 

- g2Ps (0"1"k)(0"2"k) . (F.3)  
2 Vps(k, P) = 4m z k 2 + m p s  

scalar mesons (or, 8): 

p2 k 2 i ] 
V~(k,p)= k 2g~ 1- + S'(k×p) +m~ ~ m  2 8m 2 2m 2 

(F.4) 

where S = ½(0.1 + 0.z); 
vector mesons (co, p): 

1 { [ 3P 2 k2 
2 g ~ l +  Vv(k' P) = k 2+ mv 2m 2 8m 2 

. . . .  + --  (0.x • k)(0.1 • k) + 4i °'1 0"2 m m 

3i k 2 1 ] 
- -  + ~ m  2 S . ( kxp ) -0 .1"0 .2  ~ + ~ (0.1 "k)(°'2 "k) 

f2v k)]} 
+ 4m-"~ [- 0.1" °'2 k2 + (¢t" k)(°'2" • (F.S) 

The resulting expressions still contain nonlocalities due to p2 as well as k x p terms. The latter leads to 
the angular momentum operator L -- - i r  x lr in r-space, whereas the former provides V 2 terms. An 
analytic Fourier transformation can now be performed and yields: 

pseudoscalar mesons: 

- -  ~ Y(mp~r) 0" 1 • 0" 2 + Z ( m p s r  ) S12 • Vp,(mp,, r)-- 12 4"#" rap, ~ (r.6) 
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scalar mesons: 

- ~ m~ -~ Y(m~r) + 4m'--- 7 

(F.7) 

vector mesons: 

m, 1 + ~ ~ Y(mvr) - ~m 2 [172y(mvr) + Y(rnvr)V 2] 

1 
+-~(-~)2y(mvr)o.l"o.2-a2Z1(mvr)L'S-~Z(m,r)S12 } 

+ 2 g~fv m~{(mjm)2 Y(mvr) + 2(mjm)2 y(m,r)o.l.o.2 

-4Z,(mvr)L. S - 13Z(mvr)S,2} 

+ ' ~  mv{ ~(m,/rn) 2 Y(m,r)'o.l " ° '2-~Z(m,r)Sx2},  

with 

Y(x) = e-X/x, Z(x) = (mJm)2(1 + 3/x + 3/x 2) Y(x), 

Z I ( x  ) = 1 I x  + 1 / x 2 ) y ( x ) ,  
(#,.  r)(o.2' r) 

$12 = 3 r2 - °'x" °'2, 

(F.8) 

and 

d 2 L 2 
V2= + !  r -  - -  

r ~ r  2 r 2 " 

We use units such that h = c = 1 (hc = 197.3286 MeV fin). The use of the form factor, eq. (3.3), at each 
vertex (with n~ = 1) leads to the following extended expressions: 

2 2 2 2 

V (r) = r) . - - U -  z r  V (A. , r) + : f :  - - : r  V (A° r) 
Aa,2 - Aa,1 ' ' A~,2 - A,,I ' ' 

(F.9) 

where A., 1 = A, + e, A,, 2 = A,, - s, 8/A, ,~ 1. 8 = 10 MeV is an appropriate choice. 
The full NN potential is the sum of the contributions from six mesons: 

v(r)= V.(r) 
a ='rr ,p,'q ,~),8,o" 
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Table 14 
Meson and low-energy parameters (LEP) for the configuration space one-boson-exchange 

potential (OBEPR) 

g2o/41r; [f.lg,,] m. (MeV) A° (GeV) LEP Theory 

14.9 138.03 1.3 e d (MeV) 2.2246 
PD (%) 4.81 

p 0.95; [6.1] 769 1.3 Qa (fro2) 0.274 
/~d (/.~) 0.8524 

"q 3 548.8 1.5 A s (fro -tt2) 0.8860 
DIS 0.0260 

to 20; [0.0] 782.6 1.5 ra (fm) 1.9691 
a, (fin) -23.751 

2.6713 983 2.0 r I (fm) 2.662 
a t (frn) 5.423 

¢r 7.7823" 550 * 2.0 r, (fm) 1.759 

For notation and experimental values see tables 3 and 4. n° = 1 for all mesons. 
~The parameters for the ~r-boson given in the table apply for the T= 1 NN potential. For 

T = 0 we have: m, = 715 MeV, g2,141r = 16.2061 and A,, = 2.0 GeV; the parameters for the other 
mesons are the same for T= 0 and T= 1. 

where ~r and ~q are pseudoscalar (ps), cr and 8 scalar (s) and ~o and p vector (v) mesons. The meson 
parameters are given in table 14'. Note that for the isovector mesons "rr, p and 8, V=(r) has to be 
multiplied by %.% leading to a factor ( -3)  for T = 0 NN states. 
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