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Section 1

Introduction

. Tradition cannot be inherited, and if you want it
you must obtain it by great labor.

— T. S, EuloT, Tradition and

the Individual Telent

Nowadays it has become customary in nuclear physics to denote by ‘tra-
dition' the approach which considers nucleons and mesons as the relevant
degrees of freedom. It is the purpose of this article to review this ‘tra-
ditional’ epproach in the area of nuclear forces and their applications to
nuclear structure,

The other important sector of nuclear physics in which mesons have
revealed their reality, is electron scattering. Meson-exchange currents are
indispensable for the quantitative explanation of the electromagnetic prop-
erties of nuclei. We will not review this aspect here: it is a comprehensive
topic by itself and excellent overviews do exist in the literature (RW 79,
FP 87).

The present time appears quite appropriate for a review of the subject.
The relevance of subhadronic degrees of freedom for nuclear physics has
become a central issue. Therefore, it is important to know how successful
the traditional approach really is, and if there are clear indications for its
" limitations. We will repeatedly refer to this question in the course of the
article.

The concret purpose of this review is essentially twofold. One intention
is to provide a broad introdution into the field of nuclear forces and the nu-
clear many body problem with particular emphasis on nuclear matter. On

1



2 SECTION 1. INTRODUCTION

the other hand, we will also present and discuss the latest results from these
two important areas of nuclear physics, and point out the open questmns
future research should devote to.



Section 2

Historical Overview

History illumines reality, vitalises memory,
provides guidance in daily Iife.
— CiIcERo, De Oratore

~ In this section we shall review the history of nuclear forces. Actually,
we will do it with more care than subsequent sections require it. It is just
an interesting piece of scientific history of our century which deserves some
attention.

2.1 The “Hypothetical” Period

" The atomic nucleus was discovered by Rutherford in the year of 1911 {Rut
11). The nuclear mass was investigated by Thompson (Tho 13), who also
discovered the existence of isotopes. The first nuclear models assumed that
the nucleus consisted of A protons and A — Z electrons which seemed to
explain the mass number A and the (positive) charge number Z. Apart
from the question of how exactly such an object could be kept together
by electrostatic forces only, particularly when using quantum mechanics, a
' clear contradiction to that model occured when it was found that the UN
nucleus obeyed Bose statistics (HH 29, EO 31). According to the above
model, however, N would consist of 14 protons and 7 electrons which
should yield a half-integer total spin and make this nucleus a fermion. In
1932, the neutron was discovered by Chadwick (Cha 32). This suggested
that the neutron and the proton were the fundamental constituents of nu-
clei. On that basis, it appeared compelling to assume the existence of a new

3



4 | SECTION 2. HISTORICAL OVERVIEW

~ force acting between neutron and proton to bind the nucleus: the nuclear
force or the strong force. Since then, one central problem in physics has
been to understand the nature of this force. :

A few qualitative features concerning nuclear forces were learned from
the binding energies of (particularly, light) nuclei, from which Wigner (Wig
33} concluded that the nuclear force had to be of short range and strong
within that range. First theoretical attempts by Heisenberg (Hei 32) and
Majorana (Maj 33) introduced the concept of so-called exchange forces
which could explain nuclear saturation. Also experiment made further
progress: The binding energy of the deuteron, the only two-nucleon bound
state, was measured by Chadwick and Goldhaber in 1934 (CG 34). Proton-
proton scattering experiments developed rapidly up to about 1 MeV lab-
oratory energy during.the 1930 (THH 36). They indicated that the new
strong force also acts between two protons, leading to the hypothesis of
the charge independence of nuclear forces (BCP 36, BF 36). A thorough
‘account of the knowledge and the status of nuclear physics in those early
years is given in the excellent review article by Bethe and Bacher (BB 36).

The first more fundamental idea for the origin of the nuclear force was
created in 1935. Yukawa (Yuk 35) suggested that a new particle with an
“intermediate” mass (compared to the other “elementary particles” known
at that time, namely neutron, proton and electron), eventually called me-
son (Bha 39), could be responsible for the interaction energy between pro-
ton and neutron. The massive character of the particle to be exchanged
‘between the nuclear constituents would furnish the resulting force with a
finite range desirable to account for nuclear saturation. Yukawa’s original
theory applied to charged scalar bosons (in classical field theory) acting
between proton and neutron only, since it was fashioned after Fermi’s the-
-ory of § decay (Fer 34) in which a charge transfer is involved. Shortly
after, Yukawa reconsidered his proposal in the framework of quantized field
theory (Yuk 37, YS 37, Yuk+ 38). In the following years, variations and
. extensions were worked out by him and collaborators (YST 38, Sup 55).

What nobody could possibly foresee at that time: the stage for a half-
century struggle of hope and desperation was set. The well-known funda-
‘mental interactions in those days were the Coulomb and the gravitational
force both having mathematically a very simple form. Naturally, one ex-
pected something comparably simple for the nuclear potential, for example
Just one Yukawa function: o exp(—pr)/r (with r the distance between the
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two nucleons and g = mc/h where m denotes the mass of the exchanged
particle). However, even just phenomenologically, the nuclear force shall
turn out to be much more complicated — mainly because of its dependence
on the spins of the two interacting nucleons. In addition, field theory soon
- ran into fundamental mathematical difficulties. Both aspects have been
seemingly never-ending sources of oppressing problems and startling sur-
prises which, together with some great discoveries and successes, give the
history of nuclear forces the touch of a detective novel.

It started encouragingly: In 1937 a “meson” was found in cosmic ray, the
muon (NA 37, S§ 37). It was interpreted (as we know, incorrectly) as the
particle predicted by Yukawa, particularly since its mass (= 106 MeV) ap-
peared about right with regard to the range of the nuclear force. Therefore,
this discovery aroused considerable interest in Yukawa's idea — and thus,
the misinterpretation had a lucky side. Kemmer (Kem 38a) felt inspired to
suggest a rich variety of possible meson fields including pseudoscalar, axial-
vector and tensor, after Proca, in 1936, had considered already vector fields
(Pro 36). Also 2 “symmetric” theory (the ancient term for a theory using
iso-vector bosons, i. e. bosons with three charge states: +, neutral and - )
was proposed by Kemmer (Kem 38b) and Bhabha (Bha 38) to account for
the known hypothesis of charge independence (see also Yukawa et al., Yuk+
38). This suggestion was made in spite of the fact that experimentally only
charged “mesons” (namely p* and p~) were known. In lowest order, these

“cannot be exchanged between like nucleons and therefore seriously violate
charge independence. It was also suggested that the two-meson exchange
contribution could counterbalance this substantial inequality. Moreover, in
1939, Kemmer (Kem 39) proposed a new, higher dimensional meson field
equation which has experienced some revival in recent times (Cla 86).

Wick (Wic 38) in 1938 provided a plastic picture for how to understand

in concret terms the relationship between the mass m of a particle and .
" the range R of the force created by its exchange. As the spontaneous pro-
cess of “virtual” particle creation violates energy conservation, Heisenberg's
uncertainty relation applies: '

AE-At=h (2.1)

where AE = mc?® is the energy required to create the particle neglecting
kinetic energy. If the particle moves with at most the speed of light ¢ for a
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time At = R/¢, one obtains for the range
R = he/me? (2.2)

which is just the Compton wave lenght of the particle. The exponential
of a Yukawa function has dropped to 1/e at that distance lending further
support to the above range estimate. To obtain a range of about 2 fm the
mass has to be roughly 100 MeV ( fic =~ 197 MeV fm).

The discovery of the quadrupole moment and the measurement of the
~ magnetic moment of the deuteron by Rabi and coworkers in 1939 (Kel+
39, Kel+ 40) motivated immediately more detailed theoretical investiga-
tions and the development of more sophisticated models. Thus, it was
realized that (isovector) vector fields create a tensor force giving rise to
a quadrupolmoment in the deuteron — but with the wrong sign as com-
pared to experiment. The problem was soon overcome by also including
pseudoscalar fields. In these “mixed meson theories”?, in which both pseu-
doscalar and vector mesons were assumed (with either equal masses as in
the work of Mgller and Rosenfeld (MR 40) or with a heavier vector bo-
son, see Schwinger (Sch 42)) the problematic r~2 singularity in the tensor
force was removed. With the Schwinger force about 1/3 of the empirical
deuteron quadrupolmoment could be reproduced (JH 44). With regard to
the singularity problem, Bethe {Bet 40; see also Rarita and Schwinger, RS
41a) suggested already in 1940 the use of a “cut-off” for small distances r,
which could be interpreted as assuming extended meson sources (extended
nucleons). This idea and some problems it raised with regard to the rel-
ativistic invariance of the theory were examined by Pauli and others. An
account of this question as well as many other important issues in the me-
son theory of those days, like the “strong couplings theory”, can be found
in the lectures given by Pauli at the MIT in Fall 1944 (Pau 46). Most inter-
estingly, Pauli concluded from the fact that the pseudoscalar “symmetric”
theory predicted the right sign for the deuteron quadrupolmoment, that
this was most likely the correct theory — long before the pion was found
and its spin and parity determined. Also quite early it was recognized,
particularly by Breit (Bre 37, BS 38) and Rosenfeld (Ros 45), that vector
and scalar fields create a spin-orbit force. Empirical evidence for this was
seen in the spectra of light nuclei. Rosenfeld in 1948 (Ros 48):

TKind of early forerunners of the one-boson-exchange potentials, which shall become
very fashionable twenty years later.
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The occurence of a rather large spin-orbit coupling in ®He may be
regarded as an indication of the existence of mesons of spin one.

For further details about this “hypothetical” time in meson theory (be-
fore the discovery of the pion), we refer the interested reader to the above-
mentioned lectures by Pauli (Pau 46) and the field theory text by Wenzel
(Wen 49), which offers an informative chapter on this topic. The nuclear
physics book by Rosenfeld published in 1948 (Ros 48) contains also many
contemporary details.

Experiment finishes this first period: In 1947 Conversi, Pancini, and
Piccioni (CPP 47) showed that the muon does not interact strongly with
nuclei (and therefore, according to the notation introduced in the early 60’s,
it is not a meson; it is a lepton). That same year, a (real!) meson with a
mass of about 140 MeV, the pion, was found in cosmic ray by Occhialini
and collaborators (Occ+ 47, LOP 47), and shortly after also in the Berkely
cyclotron laboratory (GL 48). In 1949, the Swedish Academy of Science
awarded the Nobel prize to Yukawa.

2.2 The Pion as the Quantum

Quite understandably, the new reality of a strongly interacting meson mo-
tivated vigorous theoretical efforts to describe the nuclear force, now, by
the pion only. This became the program of the 1950’. Naturally, it started
with high expectations and great enthusiasm (but should end in deep dis-
" appointment). The success of the renormalization program had just reha-
bilitated field theory. The pion appeared to be the quantum for the strong
interaction, in analogy to the role played by the photon in quantum elec-
trodynamics (QED). Considering the overwhelming quantitative successes
of QED, there were no limits on the expectations for the strong interaction
theory with the pion.

The works of Japanese physicists deserve our special attention for this
period, as — in the tradition of Yukawa — they probably contributed the
most to the field and, at the same time, may have also been ignored the
most — outside their country. In 1951, Taketani, Nakamura, and Sasaki
(TNS 51) presented their historic suggestion to subdivide the nuclear force
into three regions. The far-sighted character of this proposition becomes ev-
ident from the fact that nowadays, particularly in view of “QCD-inspired”
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approaches to the nuclear force?, this subdivision is still physically most
meaningful. TNS distinguish a classical (long-range, » 22 fm; r denotes
the distance between the centres of two nucleons), a dynamical (intermedi-
ate range, 1 fm < 7 S 2 fin), and a phenomenological or core (short-range,
r S 11{m) region. In the classical region the longest range part of the poten-
tial, namely, the one-pion-exchange (OPE) is dominant (the pion having the
smallest mass of all mesons or multi-pion configurations). In the intermedi-
ate range the two-pion-exchange (TPE) is most important, although havier
mesons may also become relevant. Finally, in the core region many differ-
ent processes play a role. There are multi-pion exchanges, heavy mesons
of various kinds and — from today’s point of view — genuin quark-gluon
exchanges. This classification has been of utmost theoretical and practi-
cal importance. It allows a step-by-step exploration of the two-nucleon
interaction and permits, if necessary and suggested by theory, a different
derivation for different parts of the force. Thus it is possible to first calcu-
late the longer range parts of the potential, and correlate the results with -
empirical information prevailingly sensitive to just that region. In this way,
the whole problem — with all its oppressive complexity — does not have
to be faced at once. Also, in the light of TNS, the use of extended sources
(cut-offs) does not appear so problematic anymore.

In the decade under consideration, the one-pion-exchange became ex-
perimentally well established as the long range part of the nuclear force
{Sup 56). The evidence canmie from the analysis of NN scattering data and
the deuteron., Speaking in dispersion-theoretic terms (Che 61), the NN
scattering amplitude in the non-physical region of the complex cos©.,,
plane (with @, the scattering angle in the center-of-mass system) has two
symmetrically located poles associated with contributions from one-pion
intermediate states. The experimental data is extrapolated to these poles
to yield the pion-nucleon, coupling constant. This procedure can be ap-
plied both near 0° and 180° for the scattering angle ©,,,. The 7N coupling
constant obtained in this way agreed with that known from #N scatter-
ing (Czi4 59}). An equivalent procedure can be applied in the framework
of the (partial-wave) phase-shift analysis. For sufficiently high orbital an-
gular momentum (corresponding to large inter-nucleonic distances) OPE
only is assumed. It turned out that the y? for the phase-shift solutions

For an recent review of quarks in nuclear physics see e. g. C. W. Wong (Won 86).
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(a) (b) ' {c) (d)

Figure 2.1: Some two-pion-exchange contributions to the NN in-
teraction. (a) is a box diagram, (b) a crossed box; (c) and (d)
contain virtual pairs. Pair diagrams with crossed pion-exchange are not
shown. Full lines denote nucleons, dashed lines pions. The underlying time
axis is verticel, pointing upwards into the future.

is a minimum for the correct pion mass and coupling constant (as known
from 7N scattering) (Bre+ 60, Bre 62). In the case of the deuteron, the
quadrupole moment can be well explained by the OPE potential {(Iwa+ 56,
Sup 56, Won 59, GK 62). Furthermore, the asymptotic D/S state ratio
of the deuteron wave functions provides convincing evidence for the OPE
tail (Iwa+ 55 and 56, Won 59). In modern times, the different pieces of
evidence for the one-pion-exchange have been re-examined by Ericson and
Rosa-Clot (ER 83, Eri 84, ER 85). They essentially confirm the arguments
used in the olden days, summarized in this paragraph; however, due to the
much higher accuracy of the data available in the 1980’s, the points can be
made much more precise.

As the one-pion-exchange contribution to the nuclear force combined all
the pleasant features a physicist may wish from a theory -— such as easy to
evaluate and most satisfactory in explaining data — so did the two-pion-
exchange evolve in an opposite way. It is painful to evaluate and for a
long time it had not even been doing well in correlating data. The calcu-
lations are not only extremely complicated and tedious, but, in addition,
they were beset for a long time by a number of serious ambiguities, which
led to quantitatively rather different results causing serious controversies.
The many efforts of pion-theoretical potentials of the 1950's are usually
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divided into two groups: The Taketani-Machida-Onuma (TMO 52) and
the Brueckner-Watson (BW 53) type. In the former case an S-Matrix was
evaluated directly from meson field theory, from which in turn a potential
was derived. In contrast, the BW method was based on an expansion in
the particle number and derived a potential directly. The main differences
between the two approaches were that the box-diagrams and the pair terms
(i. e. contributions with nucleon-antinucleon intermediate states, see Fig.
2.1) were always included in TMO whereas BW excluded the box from the
beginning and could at will leave out the pair terms. For this pair suppres-
sion there is evidence from low energy #N scattering in S-waves where the
pair term leads to by about two orders of magnitude too large a scattering
~length. Therefore it was suggested that the suppression of virtual pairs
might be & general feature of meson theory (BGG 53). This will be put on
a better footing by the introduction of chiral symmetry in the next decade
(GL 60, Wei 67, Bro 79). Brueckner and Watson also found an almost
exact cancelation of the one-pair and the two-pair contribution to the NN
interaction (Fig. 2.1c and d). A further source of discrepancies in the pion
theories of the 1950’s were ambiguities in the subtraction of the iterated
OPE, necessary to extract a potential (Kle 58). Apart from a general un-
certainty in the results, the spin-orbit force derived from TPE turned out to
be too weak — by one order of magnitude — than experimentally needed
(HM 62). : :

A quote by Goldberger from 1960 (Gol 60) may draw the balance for
this part of the decade:

There are few problems in nuclear theoretical physics which have at-

_tracted more attention than that of trying to determine the funda-
mental interaction between two nucleons. It is also true that scarcely
ever has the world of physics owed so little to so many. In general,
in surveying the field, one is oppressed by the unbelievable confusion
and conflict that exists. It is hard to helieve that many of the authors
are talking about the same problem or, in fact, that they know what
the problem is. :

The interested reader will find an excellent review of the period of the
1950s in the book by Moravcsik (Mor 63) and in the articles by Phillips (Phi
59) and Hulthén and Sugawara (HS 57); a more comprehensive account is
given in Bethe and de Hoffmann (BH 55). The enormous work hy J apanese
physicists is summarized in two Supplements {(Sup 56, Sup 67).
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Fortunately, there was also another line of research on the nuclear force
during the 1950’s; and this line, developing in almost complete indepen-
dence from the theoretical efforts discussed so far, was more successful.
The goals were more modest — it was the attempt to give a simple phe-
nomenclogical description of the nuclear potential.

The basis for the success of the phenomenoclogical line of research on the
nuclear force was the substantial progressin the NV scattering experiments
of this period. From the properties of nuclear many-body systems precise
and detailed information regarding the force cannot be gained. Effective
range theory (Bet 49) had made clear that from low energy data one cannot
learn much more then what can be parametrized in terms of two numbers,
the scattering lenght and the effective range. Therefore, it was obvious that
high energy data were required to obtain further insight into the nature of
the nuclear force. Moreover, differential cross sections, even al high energy,
are good only for a few 1‘a.ther basic and qualitative conclusions.® Due
to the important spin dependence of the. NN interaction, data for many
other observables are needed tg specify the scattering amplitude (WA 52,
Wol 56). In 1954, a first measurement of the polarization by Oxley et
al. (OCR 54) at Rochester at about 200 MeV laboratory (lab.) energy
showed a large result. Fermi (Fer 54) related the strenght of the measured
polarization successfully to the spin-orbit coupling postulated in the nuclear
shell model of Mayer and Jensen (May 49, HJS 49, MJ 55). Spin, the
relevance of which was well appreciated and well understood in atomic
physics since the 1920’s, finally became a broad issue in nuclear physics
— to the great benefit of the field. Because of technological advances,
also the so-called triple scattering experiments, necessary to measure the
more sophisticated spin observables, becamne feasible around 1957. Thus;,
in a very extensive set of experiments with polarized protons at 315 MeV
lab. energy, Chamberlain and coworkers (Cha+4 57) made measurements on
~ proton-proton scattering at the Berkely 184-inch cyclotron. For the first

time, a complete set of observables was measured. The phase shift analysis

3Jastrow in 1951 (Jas 51) conjectured from the observation that the differential cross
sections of proton-proton {pp) scattering at 340 MeV in ihe laboratory system (Fig. 5.12)
showed an isotropic character that the nuclear force may have a hard core. The symmetry
of the angular distribution about 90 degrees observed in neutren-proton (np) differential
cross sections (Fig. 5.11) may be attributed to exchange forces of Majorana type in the
NN interaction {Serber force) (CH 50).
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based essentially on these data performed by Stapp et al. (SYM 57) has
been of great importance to subsequent developments of phenomenological
potentials. : '

The basic aim of a potential description of the two-nucleon interaction
is twofold. One is to provide an economical summary of the data for com-
‘parison with potential-like results from theory (e. g. meson theory). The
. other aim of a phenomenological potential is to serve as an input for nuclear
siructure calculations. '

The most general form a non-relativistic potential may assume, when
taking also the spin degree of freedom of the nucleons into account, can
be derived from invariance considerations (EW 41, OM 58, GT 60). Re-
stricting to at most linear dependence on the relative momentum of the
two nucleons, p, it consists of a central, spin-spin, tensor, and spin-orbit
term. Permitting also quadratic momentum dependence, adds a quadratic
spin-orbit term (OM 58). To these operators a function of r?, p? and L? is
~ attached (with L denoting the orbital angular momentum operator). This
operator structure — either the more restricted or the extended one —
has in general been adopted since for any construction of a non-relativistic
- NN potential. The attempt to fit the NN scattering data with just the
first three terms failed (GCT 57). The next attempt, which included a
spin-orbit term, was quite successful.* This was the first quantitative NN
potential ever constructed — known by the names of Gamme] and Thaler,
published in 1957 (GT 57). This potential used a so-called hard core (in-
finite repulsion) at small distances (r < 0.4 fm) to account for the trend
of the 1§, phase-shift turning negative for lab. energies above 250 MeV.
The spin-orbit force turned out to be necessary to describe the observed
polarization data and, speaking in terms of phase-shifts, the splittings of
the difterent triplet P-waves. The short ranged character of this part of the
force became evident from the fact that F phase shifts do not show much of
that splitting anymore. The important role a spin-orbit force may play in
nuclei was foreseen already in the late 1930’s by Breit (Bre 37, BS 38) and
seriously assumed in the late 1940’s by Rosenfeld (Ros 48), Mayer (May
49) and Jensen (HJS 49, MJ 55). Another, semi-quantitative, potential
was constructed by Signell and Marshak (SM'57, SZM 57) who also used
some input from the pion-theoretic potential derived by Gartenhaus (Gar

‘In 1950, Case and Pais (C'P 50) had proposed that a spin-orbit term might help the
fit to the high energy pp differential cross section data.
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55). The early period of phenomenological studies has been reviewed by
Gammel and Thaler (GT 60).

These phenomenological type of potentials have been improved over
the years. Other examples for the hard-core type are those constructed by
Hamada and Johnston (HJ 62) and by the YALE group (Las+ 62). Both
use the five term form mentioned. These models employ a one-pion tail and
therefore reproduce the deuteron properties accurately. In the mid 1960's
R. V. Reid (Rei 68) developed hard- and soft-core potentials. One of his
soft-core versions became the most applied potential in nuclear structure
physics in the 1970's. Phenomenological potentials typically use about 30—
50 fit parameters.

A quote from an article entitled What Holds the Nucleus Together by
Hans A. Bethe published in the Scientific American in 1953 (Bet 53) char-
acterises and finishes this decade:

In the past quarter century physicists have devoted a huge amount of
experimantation and mental labor to this problem — probably more
man-hours than have been given to any other scientific question in
the history of mankind.

'Note that another quarter century is still to come, in which the efforts were
larger by about one order of magnitude.

2.3 “Dispersive” Approaches

Let us now return to the meson-theoretic work. We are in the year of 1960.
This date was characterized by essentially two facts: The failure of the
pion field-theoretic program, on the one hand, and a rich phenomenological
. experience with the nucleon-nucleon interaction (e. g. short-range repulsion
and spin-orbit force), on the other. Not surprisingly, this led Breit (Bre
60a,b) and others to revive the old idea of vector-meson exchange (BS 38,
Ros 48), which predicts both features just mentioned. Further support
came from the electromagnetic properties of the nucleon. Nambu (Nam
57), Sakurai (Sak 60a,b,c) and Frazer and Fulco (FF 59, FF 60) conjectured
that vector bosons may play the dominant role in explaining the nuclear
form factor. Their supposition was soon confirmed: In 1961, the p meson
was discovered at Brookhaven in the #~p — 7m# N reaction (Erw+ 61), and



14 ‘ SECTION 2. HISTORICAL OVERVIEW

the w meson was found at Berkeley in fp annihilation (Mag+ 61, Kil 64).
Both are spin one bosons, the p being a 27 and the w a 37 resonance, with
" masses around 770-780 MeV.

The ‘discovery of heavy mesons broke the dead-lock situation in the
meson theory of the nucleon-nucleon interaction. The first products of
the new developments were the one-boson-exchange (OBE) models. These
models are based on the old Yukawa idea that the nuclear force is meson
mediated. However, one tries to take advantage of the observation that
two or several mesons as a group tend to behave as if they formed a single
particle with a definite mass and definite intrinsic quantum numbers; in
other words, due to the fact that there is also a strong interaction between
all mesons, they are correlated or even form a resonance. In fact, it is
assumed that the uncorrelated multi-pion exchange is negligible (apart from
iterative contributions generated by the unitarizing equation). Note that,
in contrast, the calculations of the 1950’s were concerned only with the
uncorrelated multi-pion exchange.

There are also some very pragmatic reason for the OBE model. First,
the evaluation of one-particle exchange processes is essentially straight-
forward, quite contrary to multi-particle exchanges, as we saw from the
history of the 1950's. Second, within the OBE model the NN date can
be described with very few parameters (in the order of 10, in contrast to

phenomenological potentials which typically need about 30-50). Since the B

_OBE model parameters are meson-nucleon coupling constants and cutoffs,
_ & physical meaning can be attributed to them, at least in principal.

All known OBE models include & large contribution from one or two
isoscalar scalar bosons with their mass in the drea of 400 to 800 MeV. They
provide the necessary intermediate range atiraction of the nuclear force.
These bosons are supposed to represent 27-S-wave resonances. Indeed,
during the 1960’s and the early 70’s the Particle Data Group listed in its
meson table an alleged isoscalar scalar particle (called ¢ or €) in the above
mass range (PDG 74). This low mass ¢ disappeared from the table in
1976 (PDG 76) in favour of an ¢(1200) (which due to its large mass is not
useful for providing infermediate range attraction). Thus, on this point of
the OBE model confirmation did not happen. However, the quantitative
success of the model may be understood as an indication that uncorrelated
and correlated 2m exchange is in part well simulated by (fictitious) scalar
particle exchange. Still, from a more fundamental theoretical view point



SECTION 2. HISTORICAL OVERVIEW 15

this is not satisfactory, and we will come back to this point later.

First OBE potentials (OBEP) were developed by Japanese theorists
(HLM 61, Saw-+ 62, Sup 67), Bryan and coworkers (BDR 63, BS 64),
Wong and collaborators (SW 63, SW 65), and A. E. S. Green and asso-
ciates (GS 65, GS 67). The improvement of the OBE model continued into
the 1970’s. In fact, OBEP which use realistic coupling constants and which
accurately describe all NN scattering data at low energy and the deuteron
properties were not provided until the mid 1970's. Such potentials, repre-
sented in configuration space (r-space), were constructed by the Nijmegen
group (NRS 78) and Sprung and coworkers (TS 73, TRS 75). Finally, the
- OBE concept was substantially improved by considering three-dimensional
relativistic equations based upon the Bethe-Salpeter equation (SB 51) and
by working in momentum space to avoid the approximations necessary to
obtain analytic r-space expressions (Appendix A.3). Work along this line
was done by Schierholz (Sch 72), Thompson and others (Tho 70, GTG T1,
BG 72), and the Bonn group (Erk 74, HM 75, HM 76). Finally, Tjon and
collaborators solved the full four-dimensional Bethe-Salpeter equation in
the ladder approximation (FT 75, FT 77, FT 80, ZT 81).

The work up to 1971 in the field under consideration is well reviewed
by Moravesik {Mor 72) with a complete list of the bibliography of the
1960's. Other good summary articles are the Supplement (Sup 67) (in
particular the contribution by S. Ogawa et al.) and the Proceedings of the -
First International Conference on the Nucleon-Nulceon Interaction held
in QGainsville, Florida, in 1967 (Gre 67), which also reflects some of the
enthusiasm of the early OBEP-years.

As mentioned, quite apart from the quantitative success of the OBEP
in fitting the NN data, conceptually such models cannot be accepted as a
comprehensive theory, as it is hard to believe that the uncorrelated multi-
particle exchanges should be totally negligible. The longest range compo-
nent of such exchanges, and therefore the most important of that kind, is
the two-pion exchange (TPE). How to take the TPE more accurately or
even “completely” into account, was the other main topic of the 1960’s.

Of course, this topic was not new. It was one of the main goals of the
1950’5, and it failed at that time. In restrospect, and with the experience
aquired during the 1960's, we now understand the reason for this failure:
the old program did not consider correlations between the exchanged pions
or multi-pion resonances, which — as the OBE model has demonstrated
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— play a crucial role. Naturally the new goal was to include all correlated
and uncorrelated multi-particle exchanges, particularly for the case of two
pions.

In principal, there are two conceptually rather different ways to actually
calculate these contributions: by field theory and by dispersion relations.
It may be psychologically quite understandable that after the failure of
the field-theoretic program of the previous decade, there was not much
motivation to try this again. Therefore, during this period there is little
work along this line (Mac 67). Fortunately, field theory was not dead for
ever and will revive later in the light of a new view, namely, as an effective
(non-fundamental) theory.

A completely alternative approach to multi- partlcle exchange was now
pursued which has become known as dispersion theory (Che- 57, Che 61,
Man 58, Man 62). As this new approach was born out of a frustration with
. field theory — with its formidable problems of renormalization, conver-
gence, selection of diagrams (e. g. pair-terms or not}, and how to develop
a potential concept —, dispersion theory attempts to avoid these short-
comings from the beginning by trying to deal with physically observable
quantities only. Lagrangians, Hamiltenians and potentials do not occur
anymore. Instead, the new theory deals directly with reaction amplitudes.
In fact, it relates different measurable reactions to each other. In this way
it' provides a framework for a consistency check between such different pro-
cesses as VIV, 7N and electron-nucleon scattering (nucleon electromagnetic
form factors). '

The principal framework of dispersion relations is based on three funda-
mental assumptions: causality, unitarity, and crossing symmetry. From the
first the analyticity of the reaction amplitude is concluded. The third allows
to relate processes which differ from each other only by the interchange of
some incoming and outgoing particles of the reaction. Due to analyticity,
one-particle exchange appears as a pole in the scattering amplitude. This
‘fact can be exploited to extract empirical information about meson masses
and, particularly, meson-nucleon coupling constants.

In the early 1960's, Amati, Leader, and Vitale (ALV 60, ALV 63) started
work along this line into which soon many groups got involved (Gre 67, Sup
67). An idea of the difficulty of this approach can be obtained from the fact
that it took until the end of the decade for quantitative results (Bin 71,
BB 71, CDR 72, Vin+ 73). These results showed that, for the intermediate
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range, a realistic nuclear potential can be derived using dispersion relations
and empirical information from 7V and = scattering as input. Yet, these
efforts were still far from constructing a full, quantitative nuclear potential.

2.4 A Tale of Two Cities

In the course of the 1960’s the experimental program of the measurement
of NN elastic scattering observables was pursued extensively by many ac-
celerators throughout the world. As a result, by the end of the decade, the
Livermore group could come up with a phase-shift analysis of NNV scatter-
ing up to 425 MeV lab. energy of high quality (MAW 69). This provided
an important presupposition for the theoretical work of the 1970’s, dur-
ing which one was finally concerned with the ultimate goal of providing
an absolutely quantitative nuclear force which is based on meson theory as
much as possible. The work proceeded along the two lines discussed ear-
lier: dispersion theory and field theory. Both approaches finally produced
a very quantitative model. Accidentally, most of this work was done in two
Central European capitals: Paris and Bonn.

- Let us first sumimarize the final dispersion theoretic efforts. In continua-
tion of the work of Chemtob et al. (CDR 72), the Stony Brook Group (JRV
. 75) constructed a potential in which the dispersion theoretic result for the
2m-exchange was complemented by one-m and one-w exchange. For short

dfstances the potential was regularized by the eikonal form factor derived
by Woloshyn and Jackson (WJ 72). The fit to the NV scattering phase-
shifts was semi-quantitative. At about the same time, the Paris group
produced s potential based on rather similar theoretical input {Lac+ 75).
In the Paris case, the short range part of the NN interaction was treated by
an energy-dependent repulsive square-shaped cut-off. For the 2m-exchange
contribution to the nuclear potential both groups achieved even quantita-
tive agreement. Further refinements and a convenient representation of the
potential was left to the Paris group. Their final version, published in 1980,
is parametrized in terms of static Yukawa functions of multiples of the pion
mass (Lac+ 80).

Reviews about the dispersion theoretic approach to the nuclear force
have been given by Vinh Mau {Vin 79) and by Brown and Jackson (BJ
76). The latter reference contains also many mathematical details.
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Finally, let us turn to the field-theoretic attempts. After a decade of
-prevailing abstinence (see however Mac 67), for reasons explained earlier,
the field-theoretic approach was revived by the work of Lomon and Partovi
(PL 70). They evaluated the 2m-exchange Feynman diagrams with nucle-
ons in the framework of the relativistic three-dimensional reduction of the
Bethe-Salpeter equation (SB 51) proposed by Blankenbecler and Sugar (BS
66). It is a non-static approach to the 2w exchange. The old ambiguity of
how to construct and subtract the iterated one-pion-exchange when defin-
ing a potential was absent in this work (compare Section 2.2 and TMO
52, BW 53). In subsequent work Lomon and coworkers (PL 72, Lom 76,
Lom 80a) studied as well the correlated 27 S-wave contribution. A field-
theoretic model similar to that of Lomon and coworkers was developed by
Nutt and Wilets (NW 75, Nut 76). They suppressed the pair terms, which

" were included by Lomon et al..

However, the models discussed so far, left out contributions that are
of substantial importance, like meson-nucleon resonances in intermediate
states (SH 68) as well as three- and four-pion exchanges. In the mid 1870’s
the Bonn group started a program directed towards the evaluation of multi-
pion exchange diagrams including nucleon resonances. This comprehensive
field-theoretic program took about a decade. Step by step, the Bonn group
computed all 2m-exchange diagrams including those with virtual A-isobar-
excitations (HM 77, Hol+ 79, Hol+ 81, BHM 81) and, finally, also the rel-
evant diagrams of 37- and 47-exchange (Hol+ 78, HM 81, BHM 84). One
of the important findings are that, apart from the usual iterative diagrams,
the crossed meson-exchanges and the diagrams of = and p exchange are
“particularly important for a quantitative description of the NV scattering
data and the deuteron properties. The final Bonn model (MHE 87) turns
out to be highly quantitative in nature, in spite of the fact that it em-
ploys only about a dozen parameters, which — as meson-baryon coupling
constants and form factors — have a physical meaning.

There are several reasons for and advantages to a field-theoretic model. -
First, it determines the off-shell behaviour of the interaction in a well-
" defined way. As dispersion theory deals with reaction amplitudes, which
are always on-shell, the off-shell behaviour remains undetermined in such
an approach and is left to guess work or arguments of simplicity (e. g.
static Yukawa terms). Furthermore, the set of diagrams provided by a
field theoretic model forms a sound basis for a consistent generalization
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to many-body forces which may be of interest in the nuclear many-body
problem. The evaluation of meson-exchange current corrections to the elec-
tromagnetic properties of nuclei requires a precise knowledge of the meson-
exchange processes between the nucleons. Field-theoretic models also allow
for a consistent extension to intermediate energies including meson produc-
tion. '

2.5 More Recent Developments

As mentioned, in the olden days, meson theory was thought of as a fun-
damental theory with the mesons being the field quanta in analogy to the
photon in QED. Since some time we know that this is not true. The present
candidate for a fundamental theory of strong interactions is quantum chro-
modynamics (QCD) in which the gluons (massless vector bosons like the
photon) are the field quanta exchanged between quarks (Ynd 83). On
that basis, meson “theory” can be understood as an effective description of
quark-gluon dynamics in the low energy regime. Afterall, note that mesons
and baryons are the particles seen in experiment. There are theoretical at-
tempts to connect the fundamental theory of QCD with the very successful
meson picture at low energy. The Skyrmion model is an example (ZB 86,
MZ 86). In other attemipts, one tries to derive the NN interaction more
or less directly from QCD (see Won 86 for an overview). At present, the
predictions are more of a qualitative kind. For quantitative results, the
‘one-pion and two-pion contributions have to be added by hand, as they do
not emerge naturally out of QCD inspired models. Knowing that = and
97 are the most important parts of the nuclear force, this defect of present
quark model calculations is serious. On the other hand, the short range
repulsion seems to arise naturally in a quark model. However, this does
not necessarily imply that vector boson exchange has become redundant;
omega exchange is equally important for providing the indispensable spin-
orbit force, which is not predicted by quark models to the sufficient amount
and, in fact, turns out to be unwanted for the baryon spectrum. Quark bag
models use typically bag radii in the order of 0.8~1.2 fin (Tho 83). If meson
exchanges are cut down at that distance, a quantitative description of the
NN data is impossible. In particular data (like the deuteron properties),
which can almost exclusively be explained by one-pion-exchange, can by no
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means be described with such an extended # NN vertex form factor (Eri -
84; and Section 4.2).

Since the mid 1970’s, particularly due to the experimental work at the
so-called meson factories, a large amount of precision data on NV scatter-
ing at intermediate energies (i. e. up to 1-2 GeV in the laboratory frame)
has accumulated. These data reveal a spin dependence of NN reactions
even richer than at low energies (Bug 85). The inelasticities in that energy

‘range can essentially be explained by the A isobar, which nicely comple-
ments the findings at low energy where the A is indispensable for the real-
istic explanation of the intermediate range attraction as supplied by the 2m
exchange. Most amazingly, at even higher energies (several GeV), at which
plausible arguments suggest the disappearance of any pronounced spin ef-
fects, large polarizations were measured (FK 81, Kri 85). These recent

" experimental findings in NN scattering at several GeV present & challenge

to the nuclear theoretican of today. '



Section 3
| Pedagogi-cal Introduction

In this section we will start to look more closely into meson theory. Our goal
" is to understand, in qualitative terms, what the meson-exchange picture
can predict for the NN system. However, first we shall briefly review the
empirically known features of the nuclear force. This will later help to.
better assess the relevance of various meson-exchange contributions.

3.1 Empirical Features of the Nuclear Force

We will summarize below the five most important properties of the nucleon-
nucleon interaction. For a more comprehensive treatment of this topic, we
refer the reader to the appropriate literature (BW 52, SF 74, Seg 7).
~ The first two books ever written specifically about the two-nucleon system,
namely Moravesik (Mor 63) and Wilson (Wil 63), are still today very useful
introductions into the field. Furthermore, there is the book by Brown and
Jackson {BJ 76). ' '

'1. Nuclear forces are of short range (finite range). That their range is
shorter than interatomic distances we can conclude from the fact that at the
molecular level no forces other than electromagnetic are needed to explain
the known phenomena. However, we can put a much more precise and,
in fact, much lower limit on the range by studying closely the saturation
properties of nuclei. When going {rom the A = 4 nucleus, the helium,
upwards to higher A nuclei, one realizes that the binding energy per nucleon
remains about constant. The dénsity remains also roughly the same, the
radius of heavy nuclei being proportional to A5. If the nuclear force was of

21
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long range, like e, g. the Coulomb force, the potential energy per particle

would increase with 4 and so would the density. On the other hand, for

light nuclei (4 < 4) the binding energy per nucleon does grow with A. The

deuteron is bound by 2.2 MeV, 3H by 8.5 MeV. This fact is best analysed

in terms of energy per “bond”. Thus, the binding energy per bond is about

2 MeV in the two-nucleon system and 3 MeV for the triton. In ‘He we

have = 4.5 MeV per bond (28 MeV total). One can then conclude that,

when nucleons are pulled closer to each other by more bondes (due to more
particles), also the energy per bond increases (up to saturation). From this

Wigner (Wig 33), in 1933, conjectured that the nuclear force should be of
short range, namely shorter than the deuteron diameter of about 4 fin and

" roughly equal to the radius of the alpha particle of about 1.7 fm.

2. The nuclear force is attractive in its intermediate range. “Interme-
diate” is meant here relatjve to the total range of the nuclear force, which
we now consider as being subdivided according to TNS (TNS 51) in short,
intermediate and long range. The proof for the attractive character of the
nuclear force (at least, in a certain range) is provided by the fact of nu-
clear binding. The range of this attraction can be obtained more precisely
by considering the central density of heavy nuclei as known from electron
scattering. This density is about 0.17 fm™® (nuclear matter density) which
is equivalent to a cube of lenght 1.8 fm for each nucleon. Thus, the average’
distance between the centers of two nucleons in the interior of a nucleus
is about 1.8 fm, in close agreement with our estimate given under item 1.
This average distance should he about the range of the attraction. Further
evidence for the (partially) attractive character of the nuclear force comes
from the analysis of NN scattering data. The S-wave phase shifts are pos-
itive (corresponding to attraction) for low energies, see Fig. 3.1. Note that
the average momentum of a nucleon in nuclear matter is equivalent to a
laboratory energy of about 50 MeV.

3. The nuclear force has a repulsive core. Such an assumption could
help explaining the saturation properties of nuclear forces and the constant
nuclear density. But this aspect is not a compelling proof for a repulsive
core, as saturation can also be generated in other ways, namely by “ex-
change” forces, by Pauli and relativistic effects. In fact, at nuclear matter
density the Pauli effect is much more important than the short range repul-
sion. Historically, a repulsive core was first proposed by Jastrow (Jas 51) to
explain the isotropy of proton-proton (pp) differential cross sections (Fig.
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Figure 3.1: NN phase shifts for the 'S; and 'D; state. Shown is the
energy dependent anlysis by Arndt (Arn 87).

5.12). However, a more precise argument is provided by the behaviour of
the 1S, and 'D, phase shifts as a function of energy (Fig. 3.1). The latter
stays positive (corresponding to attraction) up to about 800 MeV whereas
the 'S, phase shift turns negative (i. e. repulsive) around 250 MeV. Since an
S-state (orbital angular momentum I = 0, no centrifugal barrier) feels the
innermost region of the force, whereas in a D-state (L = 2) the nucleons
are kept apart by the centrifugal barrier, one may conclude that a repul-
sion at short range is indicated. The maximum classical orbital angular
mementum L,,.. involved in a range R is

Lma:: =z R ' p (3.1)

where the momentum p of a nucleon in the centre of mass frame of the NN
system is related to the laboratory energy, Fiq, by

Eja = 2p* /M (3.2)

with M the mass of the nucleon. For Ej; = 250 MeV, where the 1S, phase-
shift turns repulsive, we have p = 1.7 fm~?. With L. < 1 we obtain

R £ 0.6 fm. - (3.3)
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Figure 3.2: Mixing par ameters for J < 4. The analysis by Arndt (Arn
87} is shown.

This should represent a fair estimate of the radius of the repulsive core.

4. There is a tensor force. The most striking evidence for this fact
is seen in the deuteron: the quadrupole moment, the magnetic moment
" (which requires a D-state contribution), and the asymptotic D/S state
ratio. Further evidence is provided by the non-vanishing mixing parame-
ters, €y, as obtained in a plhase-shift analysis of NV scattering data (Fig.
3.2). This parameter is proportional to the transition amplitude from a
state with L = J — 1 to one with L = J + 1 (with J the total angular
momentum). Of all operators, by which the most general non-relativistic
potential can be represented, only the tensor operator has non-vanishing
matrix elements for this transition.

5. There is a spin-orbit force. A first indication for this fact was ob-
served in the spectra of nuclei. Note, however, that this refers to the effec-
tive nuclear interaction in the many-body system, which is not the same
as the free NN interaction, though these two forces are related. Clear evi-
dence came from the first reliable phase-shift analysis at high energy (SYM
57, GT 57). The triplet P-waves resulting from the analysis can only be

_explained by assuming a strong spin-orbit force, see Fig. 3.3. Speaking in
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F1gure 3.3: NN phase shifts in triplet P-waves. Shown are predictions
using & central force only (C), central plus tensor (C+T), and central plus
tensor plus spin-orbit force (C+T+LS). The dots represent energy mde-
pendent phase shift analyses (Arn+ 83, Dub+ 82).

terms of observables, a strong-spin-orbit force is required to explain the
polarization, Fig. 3.4.

 As we are dealing with the spin dependence of the nuclear force, we
should also mentione that there is a spin-spin (o, » 0,) force, which is,
however, not as unporta.nt as the latter two forces (;cr; is the spin operator

for nucleon 1).

3.2 The Idea of Massive-Particle Exchange

In the 1930’ the best established and most striking feature of the nuclear
force was its short range nature. For that reason, the first theoretical
attempts concentrated on deriving a force of finite range from some more
fundamental idea. Yukawa achieved this in 1935 (Yuk 35) by constructing
a strict analogy to quantum electrodynamics (QED). His first consideration
was carried out in the fra,mework of classical field theory, which we shall
now restate,

In QED a field of partlcles with zero mass, the photons, is assumed to
fulfill & field equation. In static approximation, the fourth component of
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Figure 3.4: Predictions for the pp polarization at 212 MeV lab.
energy. Full line: full nuclear force; dashed: spin-orbit force omitted;
dotted: central force only. (Data at 209.1 (open square), 210 (full dot),
and 213 MeV (open circle) (BL 82, Arn 87)). |

this field satisfies the Laplace equation of classical electrodynamics.

— AV(r) = eb(r) (3.4)
with A the Laplace operator. The solution
e 1

Vir)= -+ (3.5)

with r = [r[, is the familiar Coulomb potential.

In analogy, in meson theory a field of particles with non-zero mass m,
the mesons, is assumed, fulfilling a field equation, which is the Klein-Gordon
equation!

(O +m)(x) = gf(e)ih(x). (3.6)

In the approximation that the nucleon (the source of the meson field),
represented by y(z), is infinitely heavy and fixed at the origin, we obtain

(=4 +m?)g(r) = gé(r) (3.7)

'From now on we will use units f = ¢ = 1; notation and conventions as in (BD 64).
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satisfied by the “Yukawa potential”

-mr

ge
¢)(T‘) - 411' T (3'8)
Because of the exponential form, which is a direct consequence of the mas-
sive character of the particles, this potential has the desired finite range.
For zero mass one recovers the Coulomb potential. '
_This simple consideration, done in 1935, was the birth of particle physics.
Traditionally the range of a particle exchange is estimated from the

Compton wavelength equivalent to the particle’s mass
R=1/m. | (3.9)

~ In this way, one estimates for the pion (with a mass of 138 MeV} a range
of 1.4 fm. This estimate is somewhat small; in fact, the pion just starts
to become dominant at that range. That the conventional range estimate
‘is too small, is also true for the heavier mesons, It is due to the fact that
we are dealing with large coupling constants: the final nuclear potential is
a result of strong interferences of large contributions (see Fig. 3.6 below).
Applying = ‘fudge’ factor of 3 or 4 to the Compton wave length, results in
& more reahstlc estnnate of the range.

3.3 Field Theory, Perturbatioh Theory, and -
Feynman Diagrams |

As discussed, historically, the first meson-theoretic consideration was done
in the framework of classical field theory, in which the finite-range character
of the potential generated by massive-particle exchange is seen most easily.
However, for more advanced considerations, quantized field theory should
be applied. This field theory was developed first for QED. When inter-
actions are involved, it is customary to apply perturbation theory, which
appears quite reasonable for a coupling constant of 1/137. The interac-
tions, treated perturbatively, are most conveniently represented in terms
of Feynman diagrams. Originally, meson theory was believed to represent
the theory of strong interactions in analogy to QED. Nowadays, with QCD
being the candidate theory for strong interactions, meson theory is viewed
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as an effective description which may represent the appropriate approxima-
tion to the full and fundamental theory in the low energy regime typical
for nuclear physics.

Due to the strong character of the forces we are dealing with, the cou-
pling constants of the interactions of baryons and mesons are large, typ-
ically in the order of 10. Therefore, it may be questionable whether a
perturbation expansion makes any sense. Nevertheless, it is customary
to consider meson-baryon reactions in terms of perturbation theory and
in the graphical language of Feynman diagrams.? A justification for the
use of perturbation theory can be attempted in the light of the Taketani
program (TNS 51). Contributions of increasing order, which may become
increasingly divergent, are of shorter and shorter range. For the long and
intermediate range there is only a finite number of perturbative contri-
butions. Thus, for these ranges there are reasons to be confident in the
predictions generated by perturbation theory. At the very short range, due
to the extended (quark) structure of hadrons, the meson-exchange picture
should break down, anyhow. For that reason, in most meson models, one
allows for a partly phenomenological treatment of the short distances by
introducing a vertex form factor, which — in a certain sense — takes the
extended structure of hadrons effectively into account. Fortunately, since
the nuclear force is repulsive at short inter-nucleonic distances, the phe-
nomenology of the very short range is “masked” by a repulsive wall. Thus -
one may hope that predictions are not very sensitive to the unknown part
of the force.

For the above reasons, we will — as customary — discuss meson theory
in the framework of perturbation theory. The lowest order contribution to
NN scattering is the one-boson-exchange diagram. Fig. 3.5 describes this
process in the centre of mass (c.m.} frame of the two interacting particles.

According to Feynman rules (BD 64, IZ 80) the depiction Fig. 3.5 cor-
responds to the amplitude in analytical form

a1{q')T1u1(q) Patiz(~q' )T2u2(~q)
(¢ —q)* —mi

where P, over denominator is the meson propagator (represented by the
dashed line in the figure; P, = 7 for scalar and pseudoscalar exchanges, for

'(3.10)

¥An exception is the old “strong coupling theory” (Pau 46, BH 55) which, however,
can only be formulated in the framework of classical field theory.
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Figure 3.5: Feynman diagram representing a one-boson-exchange
contribution to NN scattering in the c.n. frame. Full lines denote
nucleons, the dashed line a boson with mass m,.

vector exchange see Appendix A.1) and the I'; are the vertices represent-
ing the meson-nucleon interactions {as given by corresponding interaction
Langrangians). u; and i; (= u!4®) are Dirac spinors and their adjoints
representing in- and out-going nucleons, respectively. For simplicity, we
have suppressed spin (or helicity) indices. (The four-momentum transfer
squared, (¢’ — g)?, for an on-energy-shell process as well as in the static

' ].injﬁt is —(q' — q)%.)

3.4 Various Boson Fields and their Role in
NN -

For the N N interaction at low energy there are essentially only three boson
fields which are of relevance® '

" the pseudoscalar (ps) field,
o the scalar (s) field, and

e the vector (v) field.

The modern point of view is to consider these fields as effective (non-
fundamental) fields.

3For a discussion of other fields and their couplings see (Oga+ 67).
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Guided by symmetry principals, simplicity, and physical intuition, the - -
most commonly used interaction Lagrangians which couple these fields to
the nucleon are?

Lps = —guutbivstp’™ | (3.11)

L, = +g.Pvp" (3.12)
L, = —guzb'r“zbso(”’——fﬂba“”ﬁb( upl’ — Bup)  (3.13)

where 1 denotes the nucleon Dirac spinor field, while @P?), u(*) and qoL“)
are the pseudoscalar, scalar, and vector boson fields, respectively M is the
nucleon mass. In Eq. (3.13) the first term on the r.h.s. is called the vector
{v) and the second term the tensor (i) coupling. These two couplings
are similar to the interaction of a photon with a nucleon. The first one
is analogous to the coupling of the Dirac current to the electromagnetic
vector potential, while the second one corresponds to the Pauli coupling
of the anomalous magnetic moment. This analogy is not accidental; the
" vector-meson dominance model for the electromagnetic form factor of the
nucleon explains the close relationship (Section 4.2), :

Again, these couplings should be viewed as effective interactions; in
practise, they will be slightly modified {‘smeared out’) by a vertex form
factor {see below). In the light of this view, it is insignificant that the pv
and f couplings are non-renormalizable.

Alternatively, for the ps field there is also the so-called pseudovector
(pv) or gradient coupling to the nucleon, which is suggested as an effective
coupling by chiral symmetry (Wei 67, Bro 79): :

L= — LS, o), (3.14)

Tps

The ps and the pv coupling are equivalent for on-mass-shell nucleons if the
coupling constants are related by fu, = (m,/2M)g,,. However, off-shell

" 4Throughout this paper we use the conventions and notations of (BD 64, BD 65,

VA wo_ 1 0 ! 0 o . . ] )
B0); e. g. v = o -1 Y=g o) with o' the usual Pauli matrices;
. .

5 0 . ; . T
v = 40 = iyMylyiy? = ( 1 0 ), and o = i[y*,7"]; Greek indices extend from

0 — 3, Latin indices from 1 — 3; metric tensor: goo = +1, 91 = —1, gpper = 0.
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Table 3.1: Various meson-nucleon couplings and their contribu-
tions to the nuclear force as obtained from one-boson-exchange.

Coupling Bozons Characteristics of Predicted Forces
{Strength of Coupling)
I=o I=1 Ceniral Spin-Spin Tensor Spin- Orbit
G fmenl [ o, - @.] [Sual )
ps n 1r - weak, strong —
(weak) (strong) coherent with v, ¢
s o 5 strong, — : — coherent with v
(strong) (wenk) attractive
v w P strong, wenle opposite to ps 'strong,
{strong) {weak) repulsive  coherent with ps coherent with s
t w ') — wenk, opposite to pas —
{weal) (strong) cohierent with ps

I denotes the isospin of & bason. The characteristica quoted refer to I = 0 basons (no isospin dependence).
The isovector (I = 1) boson contributions, carrying a factor 7y - 73, provide the isospin-dependent forces. )

the predictions are rather different. Anti-particle contributions (Fig. 2.1¢
and d) turn out to be huge when using the pseudoscalar coupling wheras
they are suppressed by the gradient coupling.

Ii is now in principal a straightforward (but quite lengthy) task to eval-
uate the OBE contributions Eq. (3.10) corresponding to the interaction
Lagrangians given above. (This is done in all detail in (Mac 86, Section
3.4); see also Appendix A.) This will reveal what each field and coupling
predicts for the nuclear force, In Table 3.1 we give an overview. (Note
that the features displayed in that table are obtained in the approxima-
tion which is considered in Appendix A.3.) Going back to the beginning
of this section, we notice that with each of the five most important empir-
ical features of the nuclear force, one can associate at least one boson field
which could provide an explanation. This manifests the basic reason why
meson-exchange is so appropriate and so successful for the description of
the nuclear force. / ’

 The predictions from some couplings are seen most clearly in the non-
relativistic approximation. In this approximation, the one-boson-exchange
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amplitude, Eq. (3.10), for the ps and the pv coupling reduces to the same
expression; it is obtained most straightforward when starting from the pv
coupling:® '

Qg, (al'k)(aﬂ'k) -

- 3.15
Velk) 4M? k%4 ml, (8.15)

B ’
= O {o, o k S12(k) } (3.16)
12M z k? +m?,  k?+mi, '

2 2
g m Slz(k)
= _-vp_ . _ . ps 17
TYE {o,: 0. -0 0a3 ok, i, } (3.17)
with k = q' — q and

S12(k) = 3(o k)0, k) — 0, - oK’ (3.18)

the tensor operator in momentum space. In Eq. (3.17) we have broken the
potential into spin-spin §-function, spin-spin Yukawa, and tensor force. See
Appendix A.3 for the equivalent r-space potential.

For the tensor coupling the corresponding expression is

2 (o.xk)-(o;xk)

- f! ook —(o.k)(0.k)
- -5 e (320)
3 . o ) TTL?,' S]_g(k)
T Rt A B CED)

This consideration clearly shows that these two couplings create tensor
forces, which are of opposite sign. The spin-spin forces add up coherently.

®Some simple rules of non-relativistic reduction are:

0, =t— +—t +k
Pyt o e
g — X,
* and replacing Dirac by Pauli spinors.

Furthermore, note that the vertex is i times the interaction Lagrangian stripped off the
fields, and that i times the amplitude Eq. (3.10) defines the potential V.



SECTION 3. PEDAGOGICAL INTRODUCTION 33

The repulsion created by (neutral) vector-boson-exchange can be un-
derstood in analogy to the one-photon-exchange between like charges cre-
ating a repulsive Coulomb potential. Neutral vector bosons can be visu-
alized as heavy photons. The baryon number plays the role of the elec-
tric charge. Consequently, in the nucleon-antinucleon system vector-boson-
exchange generates attraction (see Section 8.2). The spin-orbit force pro-
duced by vector bosons corresponds to the Thomas term which emerges
when the Coulomb potential is employed in the relativistic Dirac equation.
Thus, it can only be understood in a relativistic consideration; or, in equiv-
alent terms, the lower component of the Dirac spinor, Eq. (A.14), is crucial
for the creation of the spin-orbit force. See Appendix A.3 for the deriva-
tion and the explicit expressions for the vector (and also scalar) potential,
disclosing the features explained.

The next step is to look into physical manifestations of the fields dis-
cussed theoretically so far. For that purpose we give in Table 3.2 the
nonstrange mesons below 1350 MeV. In the mass range below the nucleon
" mass, one finds two pseudoscalar particles, namely m(138) and 7(550), and
two vector particles, p(769) and w(783). The (isoscalar) w has a strong
vector coupling and the (isovector) p a strong tensor coupling to the nu-
cleon (see Table 4.1 below). Futhermore, there exists an isovector scalar
meson, §(983), which, due to its large mass and its small coupling constant,
provides only a small contribution. Its isospin-dependent central force can
be used to adjust the two S-waves.

Compared to the (isovector) m, the contribution from the (isoscalar) 7
is very small. This has two reasons: first, the coupling constant of the 75 is
small, a fact which is predicted by the quark model (BJ 76) and confirmed
by phenomenclogical studies analysing NIV scattering in terms of forward
dispersion relations (GK 80) (Table 4.1 below); second, the mass of the 7 is
substantially larger than the pion mass. Note that the magnitude of one-
meson-exchange contributions is roughly proportional to g2 /m2, Eq. (3.10).
For the reasons given, the 7j is not important for the NN system. Providing
an isospin-independent tensor force, the essential effects of the 77 are that it
lowers the 3P;, raises the 3P; phase shifts, and slightly reduces the °§ — Dy
tensor force. Due to its even larger mass, the 7/(958) is even less important
than the i and in general not taken into account in boson-exchange models.

Summarizing the important contributions of the mesons dicussed so far:
the pion as the lightest particle provides the long range force and, due to its
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pseudoscalar nature, the tensor force. This tensor force is reduced at short

ranges by the p meson to a realistic size. (Note that for v and p the ps

and ¢ potentials given above have to be multiplied by the operator 7, - 7,

(with 17 the isospin operator for nucleon ¢), since 7 and p are (isospin

one) isovector particles; this factor implies a strong isospin dependence for

these two potentials.®) The w creates the short range repulsion and the
(short-ranged) spin-orbit force. Thus, these three mesons explain already

important features of the nuclear force. Still, one important property is

unexplained: the intermediate range attraction. A scalar-isoscalar boson

with a mass of 500-700 MeV could provide this missing part.

However, the existence of such a boson is not supported by any exper-

‘imental evidence. The intermediate range attraction is generated by two-

particle exchanges, particularly 2w-exchange (see Section 5). Since there
is also strong interaction between pions in relative S-wave, there is phys-
ical motivation to assume a scalar boson of a mass between 500 and 700
MeV (commonly called ¢). Adding this particle to the mesons discussed
defines the so-called one-boson-exchange (OBE)} model (see Table 3.1 for a -
qualitative summary and Appendix A for quantitative examples).

Finally, let us say a brief word about the other mesons in Table 3.2.
There are a few mesons around 1 GeV, namely the ¢(1020) and the §~(975).
These mesons have a considerable s3 content (with s denoting the strange

quark); their coupling to the nucleon is therefore suppressed according to
the Zweig rule (Clo 79). There are many mesons in the area 1200-1300
MeV, e. g. the f(1274) and the A;(1275). For reasons of chiral invariance
the A;-nieson, which is the chiral partner of the p, has been considered by
some authors (DBS 84). However, there are several good reasons why one
should leave out any meson above 1 GeV or so. First, their (short-ranged)
- contribution is masked to a considerable extent by the strong short-range re-
pulsion originating from w-exchange. Second, we have to remember that in
meson theory, it is necessary to apply so-called form factors (cutoffs) to each
meson-nucleon vertex (for more details see next section and Appendix A).
Originally this was done for purely mathematical reasons, namely to avoid
divergences in the scattering equation. However, nowadays, our knowledge
of the (quark) substructure of nucleons and mesons provides a physical rea-
son for this measure. The cutoff masses used are typically in the order 1.2 —

Note that the p has also a weak vector coupling leading to {weak, short-ranged)
isospin-dependent central and spin-orbit forces. '
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Figure 3.6: Contributions from single mesons to the even-singlet
central potential. The solid line represents the full potential.

2 GeV. Obviously, it does not make sense to take meson exchange seriousty
in a region in which modifications due to the extended structure of hadrons
come into play; or in other words, the quark structure of hadrons does not
leave any room for those very heavy mesons.

To finish this section, we show in concret terms how the four most im-
portant bosons, namely 7, o, p, and w, build up the nuclear potential.
Figures 3.6-8 demonstrate the role of each meson for the different com-
ponents of the nuclear force for which the following operator structure is
assumed in each spin-isospin state:

V(r) = Ve(r) + Vr(r)Sia + Vis(r)L - 8 (3.22)

where on the r.h.s. we have the central, tensor, and spin-orbit force. (S =
%(a‘, + o,) is the total spin and S;; the r-space tensor operator as defined
in Appendix A.3; the total isospin of the two-nucleon system is denoted by
T.) In the decompositon Eq. (3.22) the spin-spin force is included in the
central term. A quantitative r-space potential is shown in the figures.” The

TPotential A of Table A.3 is used. This potential and the decomposion Eq. (3.22) is
also employed in Fig. 3.3 and 3.4.
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Figure 3.7: The contributions from = and p (dashed) to the T'=10

tensor potential. The solid line is the full potential. The dash-dot lines
- are obtained when the cutoff is omitted.
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Figure 3.8: The contributions from single mesons to the T =
- spin-orbit potential, as denoted. The solid line is the full potential.

’
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Figure 3.9: The one-pion-exchange potential in the singlet-even
state with cutoff (full line) and without (dashed). '

influence of the cutoff on the potential is demonstrated in some cases (see
Figs. 3.7 and 3.9). Note that due to the é-function in the spin-spin (central)
{orce of the one-pion-exchange, the influence of the cutoff is rather large in
this case. It ‘smears out’ the é-function. This applies also the rho potential.
For ¢ and w the effect of the cutoff is much milder; the short-range part of
those potentials is just reduced and not reversed in sign. '
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Table 3.2: Nonstrange mesons with masses below 1350 MeV and

their pr opeztles [From (PDG 84)]

Name JFP I Mass Full width  Dominant
(MeV) (MeV) decay mode

m* 0~ 1= 13957 O prv

0 0= 17 13496 0 Ty

7 0~ 0t 5488  0.001 vy, 310

p - 1t 769 154 o

w 1- 0~ 7826 9.9 gm

7 0~ 0t 957.6 0.3 T

S~ ot ot 975 33 2n, KK

é 0t 1-, 983 54 am, KK

¢ 1= 0 1020 4 - K+K-

B 1t 1t 1234 150 wmr -

I 2t 0t 1274 178 27

A 11— 1275 315 o

D I+ 0t 1283 26 nrr, 4w

€ ot 0t 1300 200-600 2m

A, 2t 1= 1318 110 pr

Notation: spin J, parity P, isospin I, G-parity G.



Section 4

The One-Boson-Exchange
Model

As we have seen in the previous section, the exchanges of single pseudo-
scalar, scalar, and vector mesons provide all principal features necessary to
describe the nuclear force. The model which exploits this fact the most is
the so-called one-boson-exchange (OBE) model. To provide intermediate
range attraction, indispensable for a nuclear potential to be realistic, the
OBE model ‘invents’ a scalar-isoscalar boson, commonly denoted by ¢ (or -
€). Mass and coupling constant of the o are essentially free parameters
and fit to the NN data. On the background of more realistic considera-
tions (Section 5), it will turn out that such a ¢ boson represents a simple
parametrization of the 2m-exchange contribution to the NN interaction.
‘The fact that there is strong interaction between pions in relative S-wave
provides a physical argument for that approximation. Considering how
complicated the ‘true’ 2m-exchange is and how simply a single scalar-meson
exchange can be calculated, the quantitative success of the OBE model is
‘most impressive. Presumably, this explains the popularity of the model.
Sinice particle-exchange is described by relativistic quantum field theory,
it is most appropriate and consistent to work in a relativistic framework
(Section 4.1). In Section 4.2 we will demonstrate for some cases the rela-
tionship between the meson parameters and the predicted properties of the
two-nucleon system.

39
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‘4.1 Covariant Equations

Two-nucleon scattering is described covariantly by the Bethe-Salpeter (BS) .
equation (SB 51).} In operator notation it may be written as

M=V +VGM (4.1)

with M the invariant amplitude for the two-nucleon scattering process, V
the sum of all connected two-particle irreducible diagrams and G the rela-
tivistic two-nucleon propagator. As this four-dimensional integral equation
s very difficult to solve (FT 75), so-called three-dimensional reductions have
been proposed, which are more amenable to numerical solution. These ap-
proximations to the BS equation are also covariant and satisfy relativistic
elastic unitarity. However, the three-dimensional reduction is not unique,
and in principal infinitely many choices exist (Yae 71). Typically they are
derived by replacing Eq. (4.1) by two coupled equations:

M=W+ WgM (4.2)

and

W=V + V(G- g)W (a3)

where g is a covariant three-dimensional propagator with the same elastic
unitarity cut as G in the physical region. In general, the second term on
the r.h.s. of Eq. (4.3) is dropped to arrive at a substantial simplification of
the problem. '

It is convenient to work in the c. m. frame (Fig. 4.1}, where we can write
the BS equation as (notation and conventions of (BD 64, BD 65, IZ 80)) .

M(gsqlP) = V(d5alP) + [ ARV HIPYGHPIMglP)  (44)
with
G(kP) = — L ‘ . (4.5)
(2m)t (3 P+ k=M +ie)D (1 P— - M +i)®
Co i P EEM g FPEEM g
- (2#)4{(%P+k)2—M2—I—ze} [( k)? — M2—|—15 2()46

! An excellent survey of the theory of the Bethe-Salpeter equation is given in (Nak 69).
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o2~ g ~a') (Vo2=90,-a)  (Vi2—gh—q') (VaR—g0,—q) (VE2— o ') (VA2— ko, —K] (v4/2 - g0, —q)

- D[+ DL

Wi2+9,q)  (VaR+ena)  VER+gnq)  VA2+20q) (\f-ﬂﬂa-q') (\/"/2+kn|k) (Va2+g0,9)

Figure 4.1: Kinematics of the Bethe-Salpeter equatmn in the c. m.
frame

where g, k, and ¢’ are the initial, intermediate, and final relative four-
momenta, respectively (with e. g. k = (ko,k)), and P is the total four-
momentum in the ¢. m. frame: P = (y/5,0) with /s the total energy;
ﬁ— 4*k,. The superscripts refer to particle (1) and (2). In general, we
suppress spin (or helicity) and isospin indices.
- Based on a suggestion by Blankenbecler and Sugar (BbS) (BS 66),?

gn_ren originally for spinless particles, one possible choice for g is, when
stated in manifestly covariant form (PL 70) |

1 = ds
gms(k,s) = ‘uﬂprTIi:r;“““fy+k)‘ﬂﬁ]

x6{+)[(§P’ — k)? — M?
<[5 P+ Ko+ MO e o M) (47)

with §(*) indicating that only the positive energy root of the argument of
the é-function is to be included, placing the particles on the positive mass
shell. The propagator gms has the same discontinuity across the right-
hand cut as G, and therefore preserves the unitarity relation satisfied by
M. Integration yields the reduced expression

ms(k, s) = 8(ko)Fms(k, ) (4.8)

1A similar equation has been proposed by Logunov and Tavkhelidze (LT 63) for appli-
~ cation in optical potential scattering from nuclei.
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with ) @)
1 M? AV(K)AY (k)
g = 4-9
gHﬁ(k)'?) (2_”)3 Ek %S—E,:':—}-ie ( )
where
Ay (Y EBe—y kMo 1
A = (PSR (410)
= 3 u(k, A)i(k, A) (4.11)
Ai

represents the positive-energy projection operator for nucleon 7 with u(k) a
positive-energy Dirac spinor of momentum k; A; denotes either the helicity
or the spin projection of the respective nucleon, and E; = +M? 4 k2
~ The projection operators imply that virtual anti-nucleon contributions are
‘suppressed.® It has been shown in (FT 80, ZT 81) that these contributions
are small when the pseudovector coupling is used for the pion.

Assuming W = V, we replace in Eq. (4.4) G by gps yielding

M(0, q’; e, QI\/;) = V(O: q’; 0, q)+f dakV(O, q’; 0, k)gﬂx‘i(k! S)M(Ov k; 0, QI\/—)
. (4.12)
" in which the both nucleons in mtermedmte states are equally far off their
mass shell. Note that there is four-momentum conservation at each vertex,
and that in the initial state the nucleons are on their mass-shell (go = 0,
Fig. 4.1). The total c.m. energy is '

Vs = 2E,. (4.13)
With this we obtain, simplifying our notation

&k M2 AP AP (~k)

M(q';q)=v(qr,q)+f Ve g Mk a) (4.14)

| Taking matrix elements between positive-energy spinors yields an equation
for the scattering amplitude

M?
T =V "k
(q',q) = (~t1c1+f2)3 Vidq, )Ekq

1 .
e, (415)

3For a choice which includes antiparticle intermediate states see e. g. F. Gross (Gro
69).
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where, as before, spin {helicity) and isospin indices are suppressed. Within
the OBE model, the quasi-potential V is a sum of OBE amplitudes (see
Appendix A), which is also denoted as the ladder approximation. Defining

M
E,

7§
Eq
V(d,q) = \/EHV(q q)\/Eﬂ, (4.17)

which has become known as “minimal relativity” (BJK 69, PL 70, BJ 76),
‘we can rewrite Eq. (4.15) as

T(q',q) (4.16)

T(d,q) =

and

~

Tid,0) = V) + [ sV gy Tlen) (419

which has the form of the non-relativistic Lippmann-Schwinger equation.
A potential, that has been defined within an equation that is formally
identical to the (non-relativistic) Lippmann-Schwinger equation, can be
applied to conventional (non-relativistic}) nuclear structure physics in the
usual way. This is the practical advantage of using Eqgs. (4.16-18). Fur-
thermore, reletions and methods familiar from non-relativistic momentum
space calculations can now be used (HT 70).

The BbS propagator is the most widely used dpprommation Another
choice, that has been frequently applied, is the version suggested by Thomp-
son (Tho 70), which reads in reduced form

1 M2 APK)AD (~k)

gk, 9) = ‘5(’“")(2«)3 2Ef s — Ex+ie’ (4.19)
This propagator yields the equation
T M ! |
(d,q) =V(d\q +f EZE B il foa) (420)

‘Since both nucleons are equally off-shell in the BbS or Thompson equa-
tion, the exchanged bosons tranfer three-momentum only, i. e. the meson-
propagator is (for a scalar exchange)

. - |
~(q' —q)? - m2’

(4.21)
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Ty 1, Py w, 6,0

Figure 4.2: The one-boson-exchange (OBE) model for the nuclear.
force. Full lines denote nucleons.

this 1s also referred to as a static (or non-retarded) propagator. :
Many more choices for g have been suggested in the literature. Some
imply retardation-like terms in the meson propagators; for example in the
case of the equations proposed by (Sch 72 and Erk 74} the meson propagator
is | .
y (By — B —{d' —q)! —mZ’ _
However, it has been shown (Mac 82) that the term (E, — E;)? in this
propagator has an effect which is opposite to the one obtained when treat-
ing meson retardation properly. In spite of its suggestive appearance and
- in spite of early believes (Erk 74), the meson propagator Eq. {(4.22) has -
nothing to do with genuine meson retardation and, therefore, cannot be
recommended. This remark applies to the scattering of two particles of
equal mass. If one particle is much heavier than the other one, it may,
however, be appropriate to put one particle (namely the heavier one) on
. the mass shell, as done in the equations of (Gro 69, Sch 72, Erk 74).

A thorough discussion of the Bethe-Salpeter equation and/or a sys-
tematic study of a large family of possible relativistic three-dimensional
reductions can be found in (Nak 69, WJ 73, BJ 76). Tjon and coworkers
have compared results obtained by solving the full four-dimensional Bethe-
Salpeter equation applying a full set of OBE diagrams with those from the

(4.22)
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BbS and some other three-dimensional equations; for BbS they find only
small differences as compared to full BS (FT 80, ZT 81).
For further formal developments, necessary to do calculations, see (MHE

87, Appendix E).

4.2 Meson Parameters and Two-Nucleon Prop-
erties

In this subsection we discuss an example of a relativistic momentum-space
one-boson-exchange potential (OBEP). The model is shown in Fig. 4.2.
This potential is constructed in the framework of the BbS equation. For
analytic information see the previous subsection and Appendix A.

‘In Table 4.1, the coupling constants of this OBEP, which are to a cer-
tain extent best-fit parameters with regard to the NN data, are given
and compared to information from other sources. Empirical sources are
rN scattering, NN phase shift analysis, NN forward dispersion relations,
and the nucleon electromagnetic form factor. Furthermore, there is the
quark model (flavour SU(3)) in which hadron-meson coupling constants .
are related to a smaller set of quark-meson coupling constants; see (BJ 76,
Appendix B to Chapter X) for details. From Table 4.1 it is seen that the
best-fit parameters of the OBEP are in good agreement with those from
empirical sources. This indicates that there is some reality to the model.
The predictions for the low energy and deuteron parameters are given in
Table 4.2. The phase shifts are shown in Section 5.4 (Fig. 5.10 and Table
5.2) together with those from more ‘advanced’ meson-exchange models. 1t
is amazing, how this simple model with its few parameters is able to do
such an excellent job of describing the two-nucleon data up to about 400
MeV lab. energy. (Phase shifts up to 1 GeV lab. energy are shown in Fig.
7.9.) , '

The constraint of fitting the two-nucleon data confines most meson pa-
rameters (coupling constants and cutoff masses) quite narrowly. This is in

" particular true for the vector bosons w and p. Apart from the (repulsive)
15, phase shifts at higher energies, the w is most important for the triplet
P-waves. This is understandable, since the w provides most of the LS force

~ which is crucial for those P waves (Fig. 3.3). Therefore, the P-waves repre-
sent the heaviest constraint on the w coupling constant (and cutoff). The



46 SECTION 4. THE ONE-BOSON-EXCHANGE MODEL

@) ®

Figure 4.3: Diagrams describing the interaction of nucleons with
the electromagnetic field. The open square represents the intrinsic form
factor of the nucleon. '

p is most influential for °Fy and *D,, with a stronger p decreasing the 3P,
and raising the *Dy phase shifts (for the latter partial wave, particularly, at
higher energies). There is also some sensitivity to the p in the °P,, Thus, in
particular these three partial waves fix the rho coupling (and cutoff mass).

Note that vector bosons are also closely connected with the electromag-
netic properties of the nucleon by the so-called vector dominance model
(IJL 73), in which one assumes that the photon couples to the nucleon
through a vector boson (Fig. 4.3a). In this way the extended structure of
the electromagnetic form factor (which is essentially described by the vec-
tor boson mass, slightly modified by an intrinsic form factor involved in the
strong coupling of the vector boson to the nucleon) as well as the anoma-
lous magnetic moments of the nucleon are explained. These moments are
related to the ratio f/g of the tensor/vector coupling of the vector bosons
to the nucleon. In the strict interpretation of the model, this ratio should
be 3.7 for the p meson which describes the {(anomalous) Pauli isovector
form factor. The larger value, f,/g, = 6, which is used in meson-exchange
models for the nuclear force aind which is also supported by empirical in-
formation from dispersion analyses (HP 75, Gre 77) seems to violate the
- vector dominance assumption. However, this can be understood in a simple
way by assuming that there is also a direct vector coupling of ‘the ploton
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to the nucleon, Fig. 4.3b (rather than all of the coupling going through the
p meson) (IJL 73). Furthermore, the vector dominance model implies for
the w, which describes the Pauli isoscalar form factor, f,/g. = —0.12; this
is a negligibly small value. Therefore most meson-exchange models for the
nuclear force use f, = 0. Knowing the y-vector meson coupling constant
(from the ete~ and ptp~ decay of vector mesons), also the vector coupling
constant, gy, can be extracted from the electromagnetic form factor of the
nucleon (Héh+ 76), see Table 4.1.

In the OBEP, the form factor for the vector bosons is a dipole per vertex,
i. e. each vertex is multiplied by

2 2
Ag;"ﬁﬂ

(G i) (429

w;th na = 2. (k= q —q denotes the three-momentum transfer.) The
cutoff mass is A, = 1.85 GeV. This is in close agreement with fits to the
‘electromagnetic form factor of the nucleon for which a dipole is preferred
- and from which a value for the cutoff mass in the order of 2 GeV is obtained
(IJL 73). In Fig. 4.3 this form factor is denoted by the small open square
(‘intrinsic form factor’).

The w coupling constant used in the OBEP is larger than obtained from
the (flavour SU(3)) quark model which predicts :

gz g2 ' o
L A bt B o~ N ~ . 424
= 90X T2 N9 X055 5. | (4.24)

Meson models typically use

g2 .
Ju 10 - 25. 4.25
e =10-25 (4.25)

Note that the difference between the coupling constant at the meson
pole, g2 /4w, and at zero momentum transfer, g2(k? = 0)/4r,* which is as
large as a factor of two or so for the heavy bosons (cf. Table 4.1), is simply
due to the ansatz for the form factor Eq. (4.23), which is used for reasons of
simplicity. It is not the case for all form factors. For example, the so-called

- etkonal form factor (WJ 72, HM 76) does essentially not change between

-1

*Defining g.(k?) = ga X [W]““, which implies g,(—m2) = ga.



48 SECTION 4. THE ONE-BOSON-EXCHANGE MODEL

10 F .
C
——— l:)
B 5 - e B
- A
— -""‘l ‘‘‘‘‘ full Bonn
ol '
O —
A
-5 ] 1 | i ]

0 100. 200 1300 400 500 600
Lab. energy (MeV )

Figure 4.4: The ¢; mixing parameter for three potentials which
differ by their NN formm factor (full lines). The symbols represent
phase shift analyses: open circles {Arn 87), full circles (Dub+ 82), full
squares (FK 87), open triangle (Chu+ 88).

- the pole and the physical region. Consequently, in meson models which
~‘use the eikonal form factor (HM 76} the coupling constants at the meson
pole have values which are very close to those obtained at zero momentum
tranfer when monopole or dipole form factors are used. Therefore, for a

- discussion of the coupling constants of the heavy mesons, the “strength”
of the coupling in the physical region as represented by the value of the
coupling at zero momentum transfer is more relevant. than the value at the
meson pole. (This does not apply to the pion.) Taking the points just
mentioned into account, there is sufficient agreement between the OBEP

- vector coupling constants and the empirical information from dispersion
theory. However, compared to the quark model the OBEP omega coupling

is definitely larger (by about a factor of two). A possible reason for this may
be that in meson models w-exchange effectively parametrizes some short
range repulsion coming from quark-gluon exchanges at short distances.

The o parameters (coupling constant and mass) of the OBEP agree
surprisingly well with empirical information as obtained from forward dis-
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Figure 4.5: Deuteron wave functions as determined by three po-
tentials which differ by their # NN form factor (full lines). The
S-waves of the three potentials are not distinguishable in the figure. The
dashed line shows the waves as predicted by the Reid soft-core potential.

persion relations by Grein (Gre 77).

The # NN coupling constant determines in an essential way the quadru-
pole moment of the deuteron and its asymptotic D/S§ state ratio. The value .
for this coupling constant as obtained from 7V scattering is very consistent
with those deuteron properties. This fact is one of the strongest arguments
for the reality of the one-pion-exchange in nuclear physics (ER 83, Eri 84,
ER 85).

There is, however, some lattitude in the t VN form factor. For the pion
we use per vertex a factor of monopole form, i. e. Eq. (4.23) with n, = 1. If
A, R 1.3 GeV, the NN data relevant to low energy nuclear physics can be
reproduced. Such a form factor influences the OPE potential just for r S 1
fin, see Fig. 3.9 where A, = 1.3 GeV is used. Concerning NN scattering
parameters, this cutoff has the étrongest influence on the mixing parameter
€1. In Figure 4.4 we show this ¢; as predicted by potentials using different
choices for A, see Table 4.3. (The dashed line in that figure is from (MHE
87).) The other NN phase parameters predicted by these three potentials
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are almost identical (namely like those of Potential B which are shown in
- Section 5.4).

The other quantities which are sensitive to A, are the quadrupole mo-
ment, the asymptotic D/§ state ratio, and the %-D-state of the deuteron
(Pp), see Table 4.3. This is well reflected in the deuteron waves shown
in Fig. 4.5.5 Notice that the differences between the various waves occur
"only for < 2 fm. Typically, the deuteron waves as predicted by meson-

theoretic potentials are softer than those derived from phenomenological
- models (the dashed deuteron wave is from the Reid soft-core potential {Rei
68) with Pp = 6.5 %). This is partly due to the strong p-coupling (without
p one obtains Pp = 6.6 %) and the 7NN form factor (Table 4.3), and
partly due to (non-local) relativistic effects contained in the potential. The
strong influence of the TN N form factor on the quantities discussed is not
surprising, since the one-pion-exchange provides the nuclear tensor force
(slightly damped at short range by p-exchange). Cutting off the pion, cuts
" down the tensor force.

Differences in the strength of the tensor force as reflected in different
deuteron D-state probabilities, have rather substantial consequences for
the predicted properties of the nuclear few- and many-body problem (see.
Section 9). The energy of the bound three-nucleon system favours a low
. Pp (Section 11.1}. 'Including relativistic saturation effects, the empirical
saturation properties of nuclear matter can be described correctly when
a weak tensor force (low' Pp) potential is applied (Section 10.5). There
are empirical indications from forward deuteron photodisintegration (AF
77, Lom 77) and from electron-deuteron scattering (Lom 80b) that the Pp
should be small {(Pp ~ 4.5 %). Because of the. large impact which the
tensor force has on nuclear structure calculations, it is worthwhile to think
about further reactions involving the deuteron which might be sensitive to
the short-range {r < 2 fm) deuteron waves.

As mentioned, a value of 1.3 GeV is & lower limit for A,. The problems
which occur for a quantitative description of the NN data when smaller
~values are used are demonstrated in Fig. 4.6 for some phase parameters.
In one case a monopole form factor with a cutoff mass of 0.78 GeV is used
(‘0.78"); in the other case denoted by ‘CBFF’ the cloudy bag form factor

5Tables and a parametrization of these deuteron waves are given in Appendix C.
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(Tho 83) )

371(kR

E (4.26)
is applied, with R = 0.8, j; the spherical Bessel function, and k = |k|. The
two choices are roughly equivalent as the cutoff parameters can be related
by A, = \/Iﬁ/ R. From the fact that the effect of these two form factors is
about the same one can conclude that the principal range of a form factor
is most important, whereas its detailed analytical structure does not have
a large impact on NN processes. (The full ine in Fig. 4.6 is from the
OBEP with A, = 1.7 GeV.) It is clearly seen that particularly the mixing
parameters and the ®D; and ®P; phase shifts are beyond any quantitative
description. Furthermore, for the case ‘0.78’ one obtains for the deuteron
quadrupole moment 0.238 fm?, for the D/S state ratio 0.0233, and for D-
state probability 2.4%. This example demonstrates that such pion form
factors are unrealistic in the NN system.

To finish this section, we show in Fig. 4.7 the contributions of single
mesons to the phase shifts. Note that in that figure the difference between
the curve ‘r+w+o’ and the full curve (full OBEP) is due to p,n and §, where
p is the largest contribution. Furthermore, in Fig. 4.8 we demonstrate how
single mesons contribute to a neutron-proton (np) differential cross section.
(In the case denoted by ‘no p’ also the small contributions from » and §
are omitted.) Note that all contributions are iterated in the scattering
equation. These figures may help to further assess the relevance of each
meson for the nuclear force. '
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Table 4.1: Meson parameters of a relativistic one-boson-exchange
potential (OBEP) and from other sources.

.OBEP OTHER SOURCES
Mg ¢2/4x  gi(k*=0)/4x" Coupl. const. Method (Ref)
[fa/ga]
T 138.03 14.4 14.21 14.28 +£ 0,18 7N scattering (KP 80);
14.52+£0.40 NN forward d.r. (Kro 81);
14.25. phase-shift an. {Dub+ 82);
14.5 phase-shift an. (Arn+ 83).
n  548.8 3 1 2.25 = NN forward d.r. (GK 80});
' b flavour SU(3) (BJ 76).
p 76O 0.9 - 042 0.6£01  fit to NV — 77 p.w.
[6.1] [6.6+1.0] (HP75);
: 0.55 NN forward d.r.
[6.0] (Gre 77).
tw 782.6 24.5 11.13 24+5+7 nucleon e.m. form fact.'prs
i ' [0.0] [<0.2] (H8h+ T6);
12.0 NN forward d.1,
[0.0] {Gre TT);
8.1+1.5 NN forward d.r.
[0.14£0.20] (CK 80);
57+20  fixed-s d.r. (HO 84);
=5 flavour SU/(3) (B .76).
5 983 2.488 1.43 = -
ot 550 8.9437 7.51 14 witl.l m,=0670 MeV,
{720) = {1B.3773) (13.92) NN forward d.r. (Gre 77).

Abbreviations: analysis (an.), dispersion relations {d.r.), partial waves (p.w.).
The [tensor/vector] ratio of the vector-boson coupling constants is always quoted
in square brackets.
The OBEP is defined within the relativistic three-dimensional Blankenbecler-
-Sugar reduction of the Bethe-Salpeter equation and uses the pseudo-scalar
coupling for w and 7.

a gn(kﬂ)

Gu rx(kg), F"(kg) = [(A_" — mu)/(A- + k2 ]ﬂ,,;

the cut-off parameters A, and n, are given in Table A.1 {Potential B).
" The ¢ parameters given in parenthesis apply to the OBEP for T'= 0 NN states.
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Table 4.2: Deuteron and low energy scattering parameters as pre-
dicted by the relativistic OBEP defined in Table 4.1 (Theory) and
from experiment (Experiment)

Theory Experiment® References

Deuteron
Binding energy —e; (MeV) 2.224% 2.224575(9) LA 82
D-state probability Pp (%) 4.99 - ' -

Quadrupole moment Q (fm?) 0.278 %  0.2860(15) RV 75, BC 79
.2859(3) ER 83, BC 79

Magnetic moment g () 0.8514 % 0.857406(1) Lin 65
Asymplotic S-state Ag (fm~Y/2) 0.8860  0.8846(8) ER 83
Asymptotic D/S-state D/S 0.0264  0.0271(8) GKT 82

0.0272(4) Bor+ 82

0.0256(4) RK 86
Root-mean-square radius ry (fm) 1.9688  1.9635(45)  Bér+ 73

1.9560(68) S5SW 81, KMS 84

1.953(3) Kla+ 86
Neutron-proton low-energy scatiering
(scattering lenght o, effective range r):
1Su: any (fm) -23.75  -23.748(10) Dum+ 83
Tup (fm) 2.71 2.75(5) Dum-- 83
35,1 a; (fm) 5.424 5.419(T) Hou T1, Dil 75, KMS 84
re = p{(0,0} (fm) 1.761 1.754(8) Hou 71, Dil 75, KMS 84

“* The figures in parentheses after the values give the one-standard-deviation
uncertainties in the last digits.

® The meson-exchange current contributions to the moments are not included
in the theoretical values.
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Table 4.3: Deuteron properties for three different choices of the
pion cutoff mass A,. .

Potential A, (GeV) g2/4r Pp (%) Qu D/S
A 1.3 147 44 0.274 0.0263
B« 1.7 144 - 50  0.278 0.0264

C 3.0 14.2 56  0.281 0.0266

See Appendix A (Table A.1) for more details about the potentla.ls
@ Potential B is presented in Table 4.1. -



53

E MODEL

ON _EXCHANG

THE ONE-BOS

SECTION 4.

-40
yoo 200 100 400
Lob. energy |HeV]

o 400

-4
yop 200 30
1HeV]

Lob. energdy

se shifts and mixing parameters as obtained .
oices for the 7NN form factor (dashed lines).
e text. The dots represent energy independent

g2, Arn+ 83):

6: Some pha
me ch

given in th
alyses (D ub+

Figure 4.
for so1ne extre
Explanations are

phase shift an



56 SECTION 4. THE ONE-BOSON-EXCHANGE MODEL

2DU T 1 H T T L] 1 T 1 250 13 T T T 3 T 1 T T
. I ] 7 i 3
L SU i 5 PD .
~ 00F 4 - 180p .
o I S
3 905 18 I L.
- 8- - .
w@ U\ ------- @y ntutd] o 0 . ' 7
N — T n ; oP-®’ @- Mtwto]
\ w - — . .p:__.—’n.'.m
_IDD 1 1 1 1 1 1 !’!‘+L 1 _SD 1 1 1 1 1 1 !__. 1 ).
0 oo 200 300 400 B 100 200 300 400
Lob. energy (HeV) Lob. energy lHeV)
1 F T 1 T T T T 1 T T 1 T T 1 1 T T
20F 1 8 10F 3
L P.i 4 5 Pl §
_ o} e ERTIAONN -
4 _..‘\ szl --— Ntwto o "..'t\
z “r.\\ = NS ety
w 201 Q.“-::.::""W 1 & 30r T~ @p i
3 I SRR B - mtw
-qD | 1 1 1 L 1 .l 1 3 _SU 1 1 1 1 l 1 1 1 1
0 100 200 7300 400 0 100 200 300 400 ¢
Lob. energy [MeVl laob. energy [MeV]
T T E T L] t 13 1] T T 1 T 1 1 1 1 T 1
200 + 3 ] 20+ 3 B
R Sl i L DI -
S~ .
- lDU*".‘-\-_______' 1 - Org—— .
g1 .-..-.‘h"--.‘h""' Mtwtal g' ...a, \ﬁ""‘---..
E .. '-. T i o -, . fow T
of ~-— —a» { -0t e .
v _“"“--..____:“'_""- nty “ L \-\'\'?:'__,‘.ﬂ'*m'*ﬂ_
T w 7
-100 A R S S N U AU N | -40 [N WA NN N SN SO « % . WU
0 100 200 300 400 0 00 200 300 400
Lab. energy [MeV!| Lob. energy [MeV]
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Figure 4.8: Contributions of single mesons to the np differential
cross section at 212 MeV lab. energy as denoted. The full line
represents the prediction by the full OBEP (Table 4.1). The full dots are
the experimental data (Arn 87, BL 82).



Section 5

Advanced Meson-Exchange
Models

* In spite of its impressive quantitative success, the one-boson-exchange model -
has some principal deficiencies. The weakest point of the model is the ficti-
tious & boson which provides the intermediate range atiraction. This part

“of the nuclear force is more realistically described by the exchange of two
pions. Therefore, attempts to improve the theory have concentrated pri-
marily on models for the 2r-exchange (Subsection 5.1). Besides this, there
are other two-meson exchange contributions of importance, in particular
the wp diagrams (Subsection 5.2). In the last two parts of this section we
will perform a comparison of meson-theoretic predictions with experimental
data. :

5.1 Models for the 27 Exchange

As mentioned, essentially two approaches have been used to derive the 27-
exchange potential: dispersion relations and field theory. Subsequently, we
will sketch both briefly.

5.1.1 The Dispersion-Theoretic Approach

Figure 5.1 describes schematically the dispersion-theoretic picture of the
2r-exchange, In this approach cne assumes that the total diagrams (a)

89
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() (b

) | (d} {e)

Figure 5.1: The 2r-exchange contribution to the NN interaction
as viewed by dispersion theory and explained in the text. Full lines
represent nucleons, dashed lines pions. :

" can be enalysed in terms of two ‘halves’ (b). The hatched ovals stand for
all possible processes whicl: two pions and a nucleon can undergo. This is
made more explicit in (d) and (e). The hatched boxes represent all possible -
baryon intermediate states including the nucleon. (Note that there are
also crossed exchanges which are not shown.) The shaded circle stands for
nm scattering. Quantitatively, these processes are taken into account by
using empirical information from N and mr scattering (e. g. phase shifts)
which represents the input for such a calculation. Dispersion relations then
provide an on-shell NN amplitude, which — with some kind of plausible '
prescription — is represented as a potential.

The Paris potential {Lac+ 80) is constructed along this line comple-
mented by one-pion-exchange (OPE) and w-exchange.  For further details
we refer the interested reader to the pedagogical article by Vinh Mau (Vin
79).



SECTION 5. ADVANCED MESON-EXCHANGE MODELS 61

R ‘
‘ n LA
=  laa-q + e 2T NN
J_m__ ™ r T
2 i :
+ P___, + p:::\ 2wNA
4 T
T T
+ J___[ + sl 2mAAL
T T
T T o
+ @1+ [[-&: B -
T T N

Figure 5.2: Field-theoretic model for the 2r-exchange. Full lines rep-
resent nucleons, double lines isobars, and dashed lines pions. The hatched
circles are correlations.

5.1.2 A Field-Theoretic Model

Alternatively, a field-theoretic model can be developed. It has the advan-
tage that the ‘potential’ (i. e. the set of all irreducible diagrams, the kernel
of the scattering equation) is given a priori on and off the energy shell.
Furthermore, the effects of the medium which occur, when the potential
is inserted into a many-body environment, can be calculated with such
a model (Section 10.2-3). In Section 7 we will see that a field-theoretic
model can be extended to intermediate energies in a straightforward way
and allows for an explanation of the inelasticities in NN scattering.
Figure 5.2 shows an example for a field-theoretic model for the 27-
exchange [from (MHE 87)]. To be realistic, this model includes contribu-
tions from isobars as well as from 77 correlations. This can be understood
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in analogy to the dispersion relations picture Fig. 5.1. In general, only the.
lowest-lying N resonance, the so-called A isobar (spin 3/2, isospin 3/2,
parity +, mass 1232 MeV), is taken into account. The contributions from
other resonances have proven to be small for the low-energy NV processes
under consideration. A field-theoretic model treats the A isobar as an
elementary (Rarita-Schwinger) particle. The Lagrangians, describing the
interactions involved, are given in Appendix A and B.

In the model shown, contributions from baryon-antibaryon intermedi-
ate states (‘pair terms’) are omitted (‘suppressed’). Using the pseudovector
(gradient) coupling for the 7 VN vertex (which is suggested as an effective
coupling by chiral symmetry (GL 60, Wei 67, Bro 79)), these pair contri-
butions have been shown to be small (FT 80, ZT 81). Also, there are large
cancelations between one- and two-pair contributions (Fig. 2.1c and d).
The latter point was noticed already in the early 1950's (BW 53) and has
been recently confirmed (Hip 88). Furthermore, there are plausible argu-
ments based on the quark model which suggest that the baryon-antibaryon
- vertex may be considerably suppressed as compared to the corresponding
baryon-baryon vertex (Bro 84).

The six upper diagrams of Fig. 5.2 represent uncorrelated 2r exchange.
The crossed (non-iterative) two-particle exchanges (second diagram in each
row) are important. They guarantee the proper (very weak) isospin depen-
dence due to characteristic cancelations in the isospin dependent parts of
box and crossed box diagrams. Furthermore, their contribution is about
as large as that from the corresponding box diagrams (iterative diagrams);
therefore, they are not negligible. Moreover, it has turned out that the
. quantitative description of the two-nucleon phase shifts, particularly, in
low angular momentum partial waves is considerably improved when the
crossed diagrams are included. This valuable experience is a further indi-
- cation for the reality of the model. _ '

We note that in the particular model under consideration the diagrams
are evaluated in a non-static approach using time-ordered perturbation
theory (see Section 10.2-3 for more details). For diagrams of two-particle
exchange, including baryon-resonance intermediate states and suppressing
pair terms, this method is more approriate than convariant perturbation
theory (which leads to characteristic problems when isobars are included,
see (PL 70)). Furthermore, the application of the model in the many-body
system is considerably facilitated in the time-ordered approach. In this
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Figure 5.3: Correlated 27-S-wave exchanges defining o',

approach, meson retardation (baryon recoil) is naturally included which has
turned out to be crucial to obtain realistic contributions from the various
diagrams. In the static approximation corresponding diagrams are by factor
of two or so bigger furnishing unphysically large contributions which cause
problems in describing the NV data.

In addition to the processes discussed, also correlated 2m exchange has to
be included (lower two rows of Fig. 5.2). Quantitatively, these contributions
are about as large as those from the uncorrelated processes. The correlated
(I =1,J = 1) 2n-P-wave contribution is described by the exchange of a p
meson which is a proper resonance with a known width. The (I =0,J =
0) 2n-S-wave correlations, which do not lead to a resonance, have been
examined by Durso ef al. (DJV 80). They showed that these contributions
can be well approximated by the exchange of a scalar-isoscalar boson {called
¢') with a broad mass distribution and a well-defined coupling constant
(see Fig. 5.3). For the wm-S-wave interaction the authors of (DJV 80) use
empirical information from = scattering. Thus, the o’ of Fig. 5.3 is a well-
defined, realistic and quantitative contribution (in contrast to the OBE
model ¢ which is an adjustable parameter).

To properly examine and analyse contributions to the nuclear force,
one must always think in terms of ranges (TNS 51). The 2m-exchange -
is of long/intermediate range. Therefore, to check its reality, we have -to
look into NN partial waves of high angular momentum (J > 4) where the
centrifugal barrier keeps the two nucleons at an intermediate distance. This
is done in Fig. 5.4.) The full line in that figure contains all 27-exchange

11 this figure, as throughout this article, ‘bar’ phase shifts as defined in (SYM 57) are
used for NN scattering below the inelastic threshold.
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contributions discussed (Fig. 5.2) plus OPE and w-exchange. (Note that
due to its short range nature, the w contribution is negligibly small in most
partial waves shown.) It is clearly seen that the phase shifts in these high
partial waves are described very satisfactorily. Note that the difference
between the dash-dot line (OPE) and the full line is essentially the effect
of the 27 exchange. Obviously there is quite some spin- a.ncl L-dependence
- which is correctly described by the model.

In Fig. 5.5 we show for the case of the *F; partial wave the effects of
the single diagrams of the model Fig. 5.2. It is clearly seen that box and
crossed box diagrams? are about equally large and that correlated and un-
correlated contributions are equally important. Diagrams involving isobars
are typically appreciably larger than those with nucleon intermediate states:
only. Note that the NAn coupling (squared) is about four times as large
as the corresponding NN« coupling (squared) (fhan/4m = 0.23 — 0.35,

fNNr/47r = 0.08).

We mentioned the dispersion theoretic approach to the problem under
consideration. Quite obviously, one may now ask the curious question:
how do both approaches compare in quantitative terms? To answer this
question, we show in Fig. 5.6 predictions from both types of approaches
in some higher partial waves. Dotted lines represent the predictions from
dispersion theory (with label P’73 from (Vin+ 73), label P'80 from (Lac+
80))." Apart from some scatter in the dispersion theoretic results, which
may be due to changes in the empirical #V input over the years and/or
some uncertainties in the analytic continuations involved in the denva.tmn,
the agreement appears to be sufficient. .

5.2 7p Contributions

So far we have considered only higher angular momentum partial waves
of NN scattering (long/intermediate ranges). When we turn now to lower
partial waves, shorter ranged contributions must come into play. There are,
of course, the vector mesons p and w, which — as discussed — are very
important. However, there are also two-meson exchange contributions of

For a precise definition of iterative and non-iterative diagiams see Fig. 10.9, where
diagram 1 — 4 are iterative and 5 - 12 non-iterative; note that the streiched box diagrams
{5 and 6) provide very small contributions.
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comparable range. One important set of such diagrams is shown in Fig.
5.7. It is constructed in analogy to the uncorrelated part of the 2 exchange
model. Tt turns out that the diagrams of mp exchange, shown in Fig. 5.7, are
absolutely crucial for a quantitative description of lower partial waves, in
particular P-waves. We demonstrate this fact in Fig. 5.8 where in the case
of the dashed and the dotted curves the mp contributions are omitted (the
two curves differ by the 7-cutoff mass which is denoted in units of GeV). It
is clearly seen that in particular *P; changes drastically to unphysical values
without the repulsive wp diagrams. The mp contributions have obviously
a strong spin dependence which is needed to appropriately suppress the
rather large 27-exchange contributions at short distances. Note that also
the crossed wp exchanges are included which — as in the case of the 2m
exchange — considerably improve the quantitative results.

The repulsive character of the mp diagrams can be understood from the
fact that the tensor forces created by single m and single p exchange are
of opposite sign (Section 3.4 and Appendix B), which together with the
negative intermediate two-baryon propagator results in a positive contri-
bution. The spin-spin forces of = and p, which are of equal sign, lead to
attraction for the 7p combination that is, in general, typically smaller than
the contribution emerging from the tensor forces (except in 3p,, Fig. 5.8).

We mentione that the wp contributions are still sizable in D-waves.
Thus, their repulsive effect leads to a much better agreement with the
empirical phase shifts, particularly, in 3D, and 3D;. The latter two partial
waves are overestimated in most meson-exchange models (Lac+ 80, NRS
78). '

It had been conjectured (Dur+ 77) that, because of its repulsive nature,
the mp contributions could take over part of the role the w plays in OBE
models. However, w exchange does not have the drastic spin-dependence
that we have just seen for mp diagrams (Fig. 5.8). Therefore, these two
contributions are not simply interchangable. The fact is: when an explicit
field-theoretic model for the 2m exchange is used, the corresponding dia-
grams of 7p exchange are needed to arrive at a realistic total contribution
from the sum of both sets of diagrams. A strong w is required in addi-

. _tion (see Table 5.1), for the usual reasons which apply to just any meson

model for the nuclear force (for a detailed discussion and a quantitative
demonstration of these points see (MHE 87)).
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5.3 Other Two-Meson Exchange Contribu-
tions

Once certain two-meson exchanges involving also heavy mesons have turned
out to be important, one should (at least for reasons of consistency) look
into other diagrams of that kind. In Fig. 5.9 we give an overview. The dia-
grams discussed so far are located above and left of the dashed line. System-
atic investigations have shown that further diagrams contribute amazingly
little (MHE 87). Important for this result is an appropriate grouping of the
diagrams (which are individually already small). In which way diagrams
should be grouped together, is indicated by the arrows in Fig. 5.9. In this
way, an increasing cancelation occurs between the different sets of diagrams
when proceeding to the lower right of that figure. Thus, some kind of ‘con-
vergence’ of the diagrammatic expansion is observed ‘empirically’.

We finally mentione that there is a non-negligible contribution from
crossed mo exchange which increases the tensor force. This allows for a
" more consistent choice of the m VN and the nNA form factors (namely
closer to each other), which in most models including isobars differ in an
unreasonable way.

5.4 Results

In this section we have stressed the fact of the two alternative nieson-
theoretlc approaches to the nuclear force. Accidentally, for each of the
two approaches there exists one carefully constructed example: the Paris
potential (dispersion theory, Lac+ 80) and the Bonn potential (field theory,
MHE 87). ,

We give the coupling constants used in both models (and for OBEP)
in Table 5.1, which demonstrates an amazing agreement in spite of the
substantial differences in the details of the models. The NA coupling con-
stants used in the Bonn model are based on relations derived from the

quark model (BW 75)
72
2
Fran= 521" (51)

with
My

fr= g"ﬁf’

(5.2)
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and

2
Fhap = 2522(5,(1 + £ /0s s/ 2MT (53
using the notation fr = fann.

. An alternative source for the ¥ NA coupling constant is the empirical
width of the A which implies fZ4, /47 = 0.35. The smaller value for that
coupling as predicted by the quark model (namely ~ 0.23) is reasonable
when crossed diagrams are included (as in the case of the Bonn model)
to avoid double counting. The larger value obtained from the A width is
appropriate in models which include box-type diagrams only, like coupled
channel models (see Section 7 and Appendix B). '

Concerning the low energy scattering parameters and the deuteron prop-
erties, the Paris and the Bonn potential essentially reproduce accurately the
experimental values as given in Tables 4.2 and 6.1. There is a difference in
the singlet scattering length (and effective range) between the two poten-
tials, since the Paris potential fits pp data (for T’ = 1) while for the Bonn
potential there exists a np (MHE 87) and a pp version (see footnote to Ta-
ble 6.2 below). Furthermore, the two potentials differ in their predictions
for the D-state probability of the deuteron (Paris: 5.77 %, Bonn: 4.25 %).
The low %- D-state as predicted by Bonn is mainly due to the inclusion of
meson retardation in that field-theoretic model.

The explicit field-theoretic form of the Bonn potential allows to deter-
ntine for the deuteron the probabilities of having configurations other than
just two nucleons. They are (with the probability given in parenthesis):
AA (0.62 %), AAnT (0.29 %), NAwr (0.44 %), NN=w (0.30 %)y, NN=
(1.32 %). The total probability of having anything but just two nucleons
is 3.94 %.2 : ' o

' In Figs. 5.10-12 and Table 5.2 we show some predictions from the two
models for NN phase shifts and observables in comparison.? It is seen
in the figures and the table that the two models reproduce the data in
general with very high precision. (Predictions from the OBEP of Section 4
are included in the figures by the dotted line; note that this dotted curve
" is omitted whenever it is very close to the full line.) Furthermore, both
predictions are so close that in most cases it is impossible to distinguish

3The values given here are more accurate than the previous ones (MHE 87).
4The Paris T = 1 np potential is the pp potential without Coulomb effects (Arn 87).
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between them. The only exception are some np spin observables at 325 MeV
where, however, the experimental errors are rather large. This demonstrates
tn an impressive way, how eztraordinerily quantitative meson theory s for
the low -energy NN interaction.

5.5 Oﬂ'—Shell Aspects

In the previous subsection we have clearly seen that the on-shell predictions
of present-day meson models show very little differences. With on-(energy)-
shell it is meant that the total energy of the two nucleons in the initial and
final state of the reaction is the same. This is, of course, always the case in
elastic two-nucleon scattering.

On the other hand, the behaviour of the nuclear potential off the energy
shell does play a role in various sectors of nuclear physics, for example in
pion production and in the nuclear many-body problem. In virtual inter-
mediate states the nucleons violate energy conservation; such states enter
nuclear structure calculations, in general, in a different way as compared
‘to the two-nucleon problem in free space (see Section 9.4).

Due to the differences in the derivation of models for the nuclear force,
_ there are indeed differences off-shell. Dispersion relations yield a scattering
amplitude on-shell. However, by defining a potential some kind of off-shell
prescription enters the denvatlon silently. Like the Reid potential (Rei
68), the Paris potential is parametrized in terms of static Yukawa functions
* which define the potential on- and off-shell. In the fieldtheoretic approach,
the set of irreducible diagrams defining a quasi-potential is given a prior
on- and off-shell. Because of these substantial differences in the origin
of the off-shell part of the potentials, it is interesting to see if noticable
differences occur. Therefore, in Fig. 5.13 we show half-shell K matrices as
derived from the Bonn (full line), Paris (dashed), and the Reid {dotted)
potential. The 1S, and the ®P; partial waves are considered. The on-shell
point is denoted by the full dot. It is clearly seen that for 1Sy there exist,
indeed, drastic off-shell differences between the potentials. In the case of
the P-wave, however, these differences are already strongly reduced

NN Bremsstrahlung (NNv), i. e. the reaction

N+N-—N+N 44,
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is one way of investigating the off-shell behaviour of the NN interaction.
Due to the production of a photon, the corresponding nucleons are put
off their energy shell. Some processes contributing to NN+ are shown in
Fig. 5.14. Note that there are also other, so-called internal mechanisms,
like rescattering and meson current contributions, which are not shown.
However, for pp Bremsstrahlung these internal processes contribute only at
a higher order of the photon momentum and are, therefore, expected to be
~ small (Fea 87, WF 86, Mor 72, Sig 69, SC 63).

In Fig. 5.15 we show a cross section and an analysing power measured
in a TRIUMF experiment on ppy (Kit+ 86). The theoretical calculations
have been done by H. W. Fearing et al. (Fea 87, WF 86). (The short-
dashed curve in that figure is obtained in the soft-photon approximation,
the dotted curve in an on-shell approximation.) The differences between
the predictions from different potentials are very small. On the background
of the half-off-shell K -matrices just considered, this result appears-amazing
in the first moment. However, more detailed investigations (Fea 87) have
ghown that the S, partial wave contributes little in this process. The
main contributions are coming from P-waves, in which, as we have seen,
the off-shell differences are already rather small. On the background of this
experience one should try to think about reactions which are more sensitive
to the S-wave contribution. It would be worthwhile to check-out on the
theoretical side if npy might be a candidate. ' :
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Figure 5.4: Higher partial wave phase-shift predictions from a
fleld-theoretic model for, the 27 exchange complemented by OPE
and w exchange (full line). The single pion contribution (OPE) is given by
the dash-dot line. Phase-shift analyses are represented by the dashed line,
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Table 5.1: Meson-baryon coupling constants used in different me-
son-theoretic NV potentials.

QOBEP © Paris® Bonn © Ao (GeV)
NN~ 14.21 14.43 14.08 13
(14.4) . (14.4)
NNn 3 0 0 -
(2.25) :
NNp 0.42 [6.1] 0.55 [6.6] 0.41 [6.1] | 1.4
(0.9) (0.84)
. NNw 11.13[0.0] = 11.75 [-0.12] 10.6 [0.0] 1.5
(24.5) - (20)
NNgd 7.51 - 4.56 , 2
(8.94) (5.69) :
NNGE 1.43 0 1.62 2
(2.49) (2.82)
NN A4, 0 14 0 -
NArm - _ - 0.218 1.2
- (0.224)
NAp - - 4.86 14
(20.45) '

For models which apply & form factor, g2 (k* = 0)/4r and (g2 /47)
" are given —— the laiter in round parenthesis —
(and correspondingly for the N A-vertices using fyaa)-
For vector mesouns, the tensor/vector ratio is quoted in square brackets.
The cutoff masses in the last column refer to the full Bonn model
(with n,, = 1, except for nya, = 2).
See Table 4.1 for definitions and a comparison to coupling constants from other sources.
4 Section 4. * {Lac+ 80). ¢ Full Bonn Model (MHE 87).
4 The o-mass is 550 MeV for both OBEP and Bonn.
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Figure 5.11: Some np observables. Lab. energies and observables as
denoted. The curves representing predictions from different potentials are
defined as in Fig. 5.10. For references to the experimental data see (Arn

87, BL 82). For notation see (Hos 68).
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Figure 5.13: Half-off-shell K-matrices at 276 MeV lab. energy as

derived from the Bonn (full line), the Paris (dashed), and the Reid (dotted)
potentials. The on-shell point is given by the dot. ,

HH W

Figure 5.14: Processes contributing to NN Bremsstrahlung taken

into account by Fearing et al. (Fea 87, WF 86). T represents the NN
T -matrix. . :
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Table 5.2: Neutron-proton phase shifts (in degrees) for various lab.
energies (in MeV) from different meson-theoretic NV potentials.

- State  Model 26 50 100 - 150 200 300

: OBEF 50.72 39.88 25.19 14.38 5.66 -B.18
s, Parus 48.38 38.12 23,88 13.38 4.84 -2.01
Bonn 50,03 30.16 24.36 13.72 §.30 -7.82

OBEP. 934 12.24 9.80 457 -1.02 -11.48
P,  Paris 9.21 11.93 8.83 5.32 D.48 -8.52
" Bonn 9.67 12.79  10.88 8.02 088 -9.88

: OBEP -7.21 -11.20 -16.44 -2045 -23.86 -20.41
py Paris -7.11 -10.86 -16.72 -19.08 -21.73 -25.82
| Bonn  -6.80 -10.48 -16.11 -1B.88 -22.41 -20.17

OBEP -5.33 -877 ~-13.4% -17.18 -20.49 -26.38
& 2 Paris -6.27 -8.84 -13.44 -17.36 -208}F -2T.30
Boan  -B.17 -8.63 -13.38 -17.62 -21.73 -20.87

OBEP 8032 62,18 4199 2884  10.04 4.07
35, Paris 80.35 62.28 42,26 20,24 19.26 3.91
Bonn  80.30 621% 42,27 29.644 2031 ° 7.08

OBEP -1.99 -6.86 -12.08 -17.28 -20.28 -23.72
3ip,  Paris  -295 -6.77 -12.85 -17.22 -20.42 -24.62
Bonn  -3.03 -6.08 -13.26 -17.84 -20.82 -23.43

OBEP 1.76 2.00 2.24 2.68 3.(.}3 4.03
€1 Paris 1.88 1.89 2.14 2.69 3.21 4.78
Honn 1.82 2.08 2.29 2.54 2.82 3.18

OBEP 068 1.58 3.34 4.94 8.21 7.48
D, Paris 078 1.85 4.00 5.00 7.47 9.10
' Bonn 0,72 1.72 3.76 5.62 7.04 8.32

OBEP  3.88 9.2  17.67  22.57 2484 2638
D;  Paris 3.06 9.60 18.84 2419 2716  28.54
Bonn  3.88 9.27 1741 21.68  23.00  20.84

OBEP 262 €14 1173 1499 16.65 17.40
P, Paris 2.61 5.97 11.34 1468 1839 16.74
Bonn 2.54 5.8 1114 -14.24 1593  17.22

OBEF 011 0.34 0.77 1.04 1.10 0.52
Iy Paris 0.11 0.38 0.78 1.05 1.06 0.48
Bonn 0.11 0.36 0.81 1.14 1.28 0.87

QOBEP -0.86 -1.82. -2.84 -3.06 —2.8B5 -2.02
£2 Paris -0.87 ~1.80 -2.73 - -2.80 -2.714 - ~2.14
Bonn -0.85 ~1.77 -2.74 ~-2.97 -2,84 -2.23




Section 6
Crharge Dependence

6.1 _Intrbduction |

Historically, it was first assumed that the nuclear force was acting between
_peutron and proton only and not between like nucleons (Hei 32, Maj 33, Yuk
35), i. . a strong charge-dependence was supposed. The isospin formalism,
introduced by Heisenberg in 1932 (Hei 32), was not meant to imply a new
invariance law. In 1936, the hypothesis of the charge independence of the
nuclear force (BCP 36, BF 36, CC 36) was stated in the form that the
~ interaction between nucleons in the same spin-angular momentum state is
" the same for pp, np, and nn. Charge symmetry (the equality of the strong
force between pp and nn) was conjectured already by Feenberg and Knipp
in 1935 (FK 35) and applied by Share (Sha 36). Share recognized that
the binding energy difference between 3 and *He, AB, is closely related
to the issue of charge symmetry. For 3He he obtained a Coulomb energy
£cou = T00 keV. The experimental value for the binding energy difference
was AB,.;, = 807 4 92 keV. Thus, with the precision of those days the
charge-symmetry breaking (CSB) difference was - S

AB.uy — Ecou(*He) = 107 £ 92 keV. - (6.1)

This provided no clear evidence for C'SB: however, as we know today, it
pointed already into the right direction (cf. Table 6.3 below). We mentione
this point in some detail, as it is an important issue still today, particularly
with higher precision data available. ' '
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With regard to the historical background sketched above, it may not be
surprising that ever since the hypothesis of isospin symmetry was formu-
lated, there was suspicion that it might be (slightly) broken. Therefore, the
charge-dependence of the nucleon-nucleon interaction has been the subject
of intense investigations both experimentally and theoretically since several
decades. Nevertheless, still today, many — even basic — questions are un-
- settled. This applies to the experimental as well as the theoretical state of
‘the art in the field.

On the theoreticel side, it was a general believe for a long time that all
charge dependence, including the mass differences between the charge states
of particles, is ultimately of electromagnetic origin, even though one could
not calculate this quite convincingly. This point of view has been modified
by the quark model and QCD. Here isospin is broken by the quark masses

" which is not necessarily an electromagnetic effect. However, since the mass
difference between the up (u) and down (d) querk is presumably small,

my, —mgx M, — MP ~1.3 MeV& My=~1 GeV, (62)

isospin invariance is a good assumption for most purposes.
The subject of charge-dependence has been reviewed extensively in the

literature (Wil 69, Noy 72, Bli 73, HM 79). Therefore, we will dlscuss here
only a few pomts we beheve to be of particular interest.

6.2 Emplrlcal Evidence

The empirical evidence for the charge-dependence of nuclear forces comes
mainly from few-body systems. The NN scattering length in the 1S, state
plays a special role. As there exists an almost bound state in that par-
tial wave, the (negative} scattering length is extremely sensitive to small
- changes in the strength of the force. Whereas the np and the pp scattering
lengths, a,, and afp, respectively, can be obtained from the corresponding
- low energy two-body data, the nn scattering lenght, a,,, poses a difficult
experimental problem due to the fact that direct nn scattering is presently
not feasible. The experiments performed to extract this scatiering length
can be subdivided into those with either two or three nucleons in the fi-
nal state. An example for the former type of experiment is the reaction
m-d — mny. A three-body final state with two neutrons is obtained in
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Table 6.1: Empirical singlet S-state low energy NN scattering pa-
rameters.

a (fm) r (fm) Reaction  References
np —23.748+0.010 2.75%0.05 np  Dumdt 83
an  —185+04  2.80+0.11 n~d—ynn TG 8T
-188%1.0 —_ nd — pnn Koo+ 87, Sla 87
pp® —T7.81340.004 2.78+0.02 pp Dum+ 83, Swa 87

- B ]

_ Given are the scattering length a and the eflective range r.
- SWith electromagnetic effects, commonly denoted by afp and rﬁ,.

the reaction nd — nnp. In the 1970%s it was claimed that a value of
ann = —16.4 %+ 1.2 fin was obtained from the analysis of a large number
of results from both types of experiments (HM 79). Recently, however, an
experimental value of

= —18.5 0.5 fm - (6.3)

has been recommended — again based on data from both types of exper-
iments (Sla 87). The terrible fight with this quantity as well as the huge
uncertainty it was beset with for a long time, is reflected well in the review
article by Henley (Hen 69). These uncertainties indicate only a part of
the tremendous difficulties involved in these experiments. In Table 6.1 we
summarize the most recent empirical values for low energy scattering in the
150 state. o

Also of interest are the pp parameters without direct electromagnetic
effects. However, their extraction is model dependent. Therefore, we give
in Table 6.2 the values obtained by applying four different NN potentials,
Assuming that the potentials in that table represent a true variety of real- -



88 | SECTION 6. CHARGE DEPENDENCE

‘Table 6.2: pp low energy scattering parameters in the absence of
the Coulomb field for various pp potentials.

Potential a,, (fm) 7y (fm) Reference

Reid -17.1 2.80 Rei 68
ssC 1758 2855 KS69
Paris  -17.3°  2.88°  Lact 80

Bonn®  -17.23  2.866 ~ MHE 87

aValues given in (Lac 80) for nn corrected
for the p — n. mass difference.

bFit to the empirical pp scattering parameters
including the Coulomb force (af, = —7.817 fm,
»$, = 2.788 fm) by using g2, = 5.6043.

istic potentials, one may conclude
g = —17.3+ 0.3 fm. (6.4) -

This value is less negative than the corresponding one for nn, Eq. (6.3),
which implies that the nn interaction is slightly more attractive than the
pp interaction.

The equality between nn (or pp) and np nuclear interactions is known
as charge independence. The data quoted in Table 6.1 show that this is
slightly, but clearly broken. With a = Laun + app) = —17.9 £ 0.6 fm,
we define the charge-independence breaking (CIB) in the singlet scattering
length as

“Aagp = @ — app = 585 £ 0.6 fm. ~ (6.5)

The term charge symmetry is customary for the equality of the forces
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Table 6.3: CSB contributions to the % - *He binding energy dif-
ference AB. [From (Bra+ 88a)]

AB (keV)  Reference

Static Coulomb | 687 Bra+ 88a
Finite size effects?® -39 Brai 88a
CSB strong force 59  Bra+ 88a
n — p mass difference in kinetic energy 12 BCS 78
Second order perturbation corrections -6 PFG 80
Other electiromagnetic effects 23 BCS T8
‘Total 742
(Experiment) (764)

* i. e. taking into account the proton electromagnetic form factors.

between nn and pp; its violation is not so clear. On the basis of the numbers
given above, one may presently assume for the charge-symmetry breaking
in the singlet scattermg length

AQ‘.CSB = G.P;, A = 1.2 4 0.6 fm. (66)

Information about charge-symmetry breaking can also be inferred from
binding energy differences of so-called mirror nuclei. The most studied
case is the ®H — ®He mirror pair. Experimentelly the difference between
the binding energies of these two three-nucleon systems is found to be
764 keV. Model-independent calculations of the Coulomb energy difference,
based on the experimental knowledge of the three-nucleon electromagnetic
form factors, amount to about 640 keV. More careful studies which also
include the effect of the n — p mass difference on the kinetic energy, the
effect of exchange currents on the electromagnetic form factors and the
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spin and momentum dependent parts of the electromagnetic interaction
increase the theoretical estimate to 683 £ 29 keV (BCS T8). A charge-
asymmetric difference of 81 £ 29 keV remains with regard to the empirical
value. Recently, it has been shown (CB 87, Bra+ 88a) that this remaining
discrepancy can be explained by a CSB force which is consistent with the
* asymmetry in the singlet scattering length, Eq. (6.6). This explanation
is plausibel, since there is a neutron pair in °H, whereas there is a pair
of protons in *He. Assuming that the interaction between two neutrons is
more attractive than between two protons, more binding energy is provided
for ®H s compared to *He (see Table 6.3 for precise numbers).

In heavier nuclei, Nolen and Schiffer (NS 69) found that the calcu-
lated energy differences between mirror nuclei were systematically too small
s compared to experiment. This is referred to as the Nolen-Schiffer or
Coulomb anomaly. However, Negele (Neg 71 and 74) showed for the 10 a1
Se mirror pair that a small charge asymmetry in the nuclear force, corre-
sponding to Aagss = 0.8 fm, could account for the remaining binding
energy difference. This asymmetry is consistent with the present empirical
evidence, Eq. (6.6). ' |

6.3 Some Results from Theory

" As discussed, from the point of view of theory, nowadays one believes that
the charge-dependence of strong forces is due to the difference in the quark
masses and to electromagnetic effects. Based on these more fundamental
causes, important sources for CIB and CSB are: '

o The mass splittings between the charge states of hadrons of the same
species, in particular, the 7 meson, the p meson, the nucleon and the

~ A isobar (Figs. 6.1-3).
e Irreducibie pion-photon exchange (Figs. 6.4-5).

¢ Electromagnetic meson mixing (Fig. 6.6).

6.3.1 Meson Mass splitting

Early, the mass difference between the charged and neutral pion was rec-
ognized as an important source for charge dependence. {Note that meson
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Figure 6.1: One- and two-meson exchange diagrams contributing
to CSB and CIB. For all mesons and baryons the different charge states
have to be considered. This is indicated in some cases. .

mass splitting does not break charge symmetry.) This mass splitting is
precisely known and amounts to 4.6 MeV {cf. Table 3.2}, which is about
3% of the total pion mass; this is a large fraction. Taking into account this
~mass difference in the one-pion-exchange (OPE} part of the nuclear poten-
tial, Fig. 6.2, produces about 50% of Aagp. Between two protons (two
neutrons) only the lighter 7® can be exchanged (with an isospin factor of
1), which makes the (repulsive) OPE potential in 1§, stronger as compared
to the np case, in which also the heavier charged pions are exchanged (with
an isospin factor of 2 for 7* and a factor (-1) for #°).! .
Recently, there have been systematic investigations of the charge-depen-

1As pointed out in Section 3.4, the étrength of OBE contributions is roughly propor-
tional to g2 /m2. '
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Figure 6.2: One-pion exchange contributiens to (a) pp (nn), and
(b) pn scattering. '

dence of the 27-exchange (TPE) contribution to the NN interaction (EM

83, CM 86). The model for the 2m-exchange used in the work of (CM
86) is shown in Fig. 6.1 with dashed lines representing pions only. The
pion mass difference was taken into account in all diagrams shown (the
indicated mass splitting between the different charge states of baryons was
not taken into account). For part of the contributions, namely those with
NA intermediate states, Fig. 6.1c and d, we show all charge-dependent
diagrams explicitly in Fig. 6.3. A crucial point in the findings of (CM 86) is
that there are substantial cancelations between the charge-dependent effects
from box and crossed box diagrams and from the contributions involving
one and two A isobars. Without these cancelations, the result would be
completely unrealistic. Thus, for example, a pure box model for the 2r
exchange would describe CIB incorrectly; the same is true for a model which
takes only single A excitation into account. These results are another strong
indication that the inclusion of crossed diagrams is important to obtain the

" - correct isospin dependerice of the nuclear force. The isovector parts of box

and crossed box diagrams (see MHE 87, Appendix B) have opposite sign
and, therefore, cancel to a large extend leading to a rather weak over-all
isospin dependence {cf. Section 5.1). _
In an alternative study by Ericson and Miller (EM 83) the 27-exchange
model of Lomon and Partovi (PL 70) was used. In spite of the substantial
differences in the details of the models, the results are very similar, namely
about 1 fm for the charge dependent effect on the scatiering length. One
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Figtlre 6.3: 2m-exchange contributions with NA intermediate states
to (a) pp and (b) np scattering. ' :

essential reason for the close agreement is that also in the model by Partovi
and Lomon (PL 70) crossed pion exchanges are taken into account. To-
gether with the OPE contribution and further contributions from wp, 7o,
and 7w exchanges (Fig. 6.1b) this explains about 80% of the CIB in the 8o
scattering lenght {Table 6.4).

We mentione-that there may be charge dependence in the coupling
constant of the pion or other isovector mesons. For example, if charge
independence of the ps coupling constant is assumed (as done in the results
quoted), the pv coupling constant, Eq. (3.14), must be charge dependent.
Furthermore, radiative corrections to the 7N coupling constant may cause
- charge dependence since those contributions depend on the charge of the
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A\

(b)

e (f)

Figure 6.4: Irreducible pion-photon exchanges contributing to CSB
and CIB. '

!

meson as well as of the nucleon (HM 79). However, there is presently
no clear empirical evidence for any difference between the #°¥ and the -
7t N coupling constants, though vigorous research on this subject is in
progess (Swa 87). Furthermore, in (EM 83) it is found that the effect
~from a possible charge dependence of the 7N coupling constant would be
small due to strong and systematic cancelations between OPE and TPE
contributions.

There may be mass splitting also for other iso-vector mesons, e. g. the
p meson — a meson which plays an important role in the meson theory
of the NN interaction. However, the present empirical value for the mass
difference between the neutral and charged p is 0.3 & 2.2 MeV (PDG 84).
This means that the evidence is not clear. Furthermore, a mass splitting
has to be compared with the total mass of the particle which is 769 MeV in
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2

(1)

Figure 6.5: Irreducible pion-photon exchange involving the lgauge
term (full dot).

this case. Therefore, even 2.5 MeV, which is the upper limit of the empirical
_value for the p-mass splitting, would amount to only about 0.3% (1/10 of
what we have in the case of the pion). Therefore, one can exspect only a .
very small effect, if any. L

'6.3.2 Baryon Mass splitting

Mass splitting of baryons, especially nucleons, causes CIB and CSB (see
the indications in Figs. 6.1-3). The n — p mass difference, which is well-
known to be 1.3 MeV, affects the kinetic energy of the nucleons and, thus,
leads to more atiraction for two (heavier) neutrons relative to two protons.
This effect is small (about.0.3 fm for the scattering length) as the nucleon
mass splitting is only 0.14%. A larger effect could be expected from the 2w
exchange. This large and intermediate-ranged contribution to the nuclear
force involves nucleons and nucleon resonances in intermediate states, in
particular the A(1236) resonance.

From the 27 exchange, Riska and Chu (RC T4) obtain Aacss = —2
fm. A recent estimate by Coon and Scadron {CS 82b) is +0.3 fm. The
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T "

- Figure 6.6: CSB forces from electromagnetic meson mixing.

discrepancy between these {wo results is probably due to substantial differ-
ences in the models used for the 27 exchange. In any case, more systematic
work is clearly needed, in which also the important mp diagrams should be
included. The model of Fig. 6.1 could provide a sound basis, since it has
been shown that this model describes the low energy NN interaction very
accurately (MHE 87 and Section 5).

6.3.3 Electromagnetic Processes

Irreducible meson-photon exchange can contribute to both CSB and CIB.
The pion being the lightest meson, 7y exchange leads to the longest ranged
charge-dependent force of that kind. It has been studied in the literature.
However, again, there is little agreement between different authors. For
example, Riska and Chu (RC 74) estimate the CSB effect on the scattering
length difference to be only a small fraction of a fermi, whereas Banerjee
(Ban 75) obtains acsp = —1.31 fm. In Figs. 6.4 and 6.5 we show several
meson-plioton exchanges which contribute to CSB as well as CIB. Some
diagrams have been examined explicitly. In the work of Chemtob (Che 75)
diagrams (c) — (f) of Fig. 6.4 have been found to be small. S. N. Yang has
- considered the diagrams of Fig. 6.5 (Yan 84). It is expected that diegrams
(a) and (b) of Fig. 6.4 provide the largest contribution to CSB and CIB.
Estimates of the CIB effect from these diagrams done so far vary by as
much as 50% depending on the author (Che 75, Ban 75, EM 83). A full
and systematic investigation is still needed.

‘There are also the py diagrams corresponding to Fig. 6.4 with the =
replaced hy the p. To our knowledge, they have never been studied.

Finally, electromagnetic mixing of neutral mesons with the same spin



SECTION 6. CHARGE DEPENDENCE . 97

Table 6.4: Charge-independence breaking (CIB) contributions to
" the singlet S-state scattering length.

Aagp (fm) References
OPE 2.80+0.1 CM 86
27 ' 0.85+0.1 CM 86
[0.88 £ 0.1) [EM 83]
np, wo, 7w 0.79+0.2 CM 86
Ty 1,10+ 0.4 7?7 Che 75, Ban 75, EM 83
Total 5.54 4+ 0.5

(Empirical) (5.85 £ 0.6)

and parity, but different isospin is another source for CSB (see Fig. 6.6). In
that figure, the box labeled ‘e.m.’ represents the electromagnetic transition
matrix element responsible for the mixing. Empirical information, for ex-
ample for the case of p—w mixing, is obtained from the branching ratio for
_the decay of the w into 2r which is about 2+0.8 % (PDG 85, CB 87). The
most studied examples are = —n(%') and p —w mixing. Coon and coworkers
(CSM 77, CS 82b) find only negligible effects from m — 7 and = — ' mixing;
however, a contribution of about 1 fm to acss is obtained from the mixing
of pg and w meson. This contribution alone essentially explains the present
empirical evidence. o ' '

6.3.4 Summary éuid QOutlook

Theoretical estimates for CSB and CIB in the singlet scattering lengths,
whicli we believe to be the best available at the present time, are given
in Table 6.4 and 6.5. Numbers which are uncertain are commented by a
question mark indicating that a comprehensive and reliable calculation is
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Table 6.5: Charge symmetry breaking (CSB) contributions to the
singlet S-state scattering length.

Aacsp (fm) References
n — p mass difference in kinetic energy  0.30 £+ 0.10 | Hen 69
n - p mass difference in 27 0,30+ 010 ? (CS82b
p° — w mixing -0.74 £ 0.35 CS 82b
7° — 7, 7° - 1’ mixing < —-0.03 CS 82a
17n® exchange 0194004 7 RC 74,Che75
Total 1.53%£0.5
(Empirical) _ (1.20 £ 0.60)

still needed.

The examples for CSB discussed so far involve Coulomb corrections.
" However, there is one system for which such corrections do not enter,
namely the np system. In'a recent measurement at TRIUMF (Abe- 86)
- the difference in the analysing power for polarized protons and neutrons
in np scattering at 477 MeV has been measured by determining the dif-
ference in the zero crossing angle of the analysing power, which makes the
measurement insensitive to the polarization calibration. The experimental
result is well explained by a calculation by Miller et al. (MTW 86) in which
only conventional mechanisms are taken into account (the dominant con-
tributions are: the effect of the n — p mass difference on the TNN vertex
and single-photon exchange). '

In summary, as far as reliable calculations and precise experimental data
exist, the phenomena of CSB and CIB can be explained quantitatively using
mesons and baryons only and no exotic ingredients. However, as mentioned
repeatedly, in some sectors there are still tremendous uncertainties, both -
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on the theoretical and the experimental side, which should be cleared up
" in the near future.

There are many more examples for CSB and CIB and, furthermore,
there other symmetries, like parity conservation and time reversal, which
are or might be slightly violated in the two- or many-nucleon system. Ap-
_ propriate meson-baryon Lagrangians describing such interactions can be
constructed. As we cannot cover these topics here, we refer the interested
reader for recent reviews to the papers by Simonius (Sim 83, Sim 87).



Section 7 

" Nucleon-Nucleon Scattering
above the Inelastic Threshold

In former sections we have seen that meson theory works excellently for
the description of the NN interaction in the low energy regime typical for
traditional nuclear physics including many subtle features like charge de-
pendence and others. It is now natural to raise the question: what happens
at higher energies? At about 300 MeV in the lab. system, meson production
starts, i. e. increasing inelasticity begins o enter the picture. Is it still pos-
sible to describe these phenomena in terms of nucleons and mesons? One
can well argue that the appearance of real mesons is a real test of meson
theory. In fact, this point indicates some of the fundamental relevance of
intermediate energy physics (i. e. hadronic physics up to energies of about
1-2 GeV in the lab. frame); it has been part of the basic motivation for
the development of the meson factories in the past. On the other hand,
there can be no doubt that the meson model has to break down at certain
higher energies, namely when the substructure of hadrons reveals itself in
a crucial way. This does certainly happen at energies of several tens of
GeV, as it was at those energies (of electron scattering) that the parton
structure of hadrons was discovered first — at SLAC in the late 1960s.
However, our feeling today is that this substructure might show up already
at much lower energies. Now, when does that precisely happen? Presently,
we do not know. Indeed, this basic question is part of the motivation for
the so-called Kaon Factories which are planned as successors for some ex-
isting meson facilities. Today, a few polarization data from NN scattering

100



SECTION 7. NN ABOVE THRESHOLD 101

at energies of several GeV exist already. They show large and unexspected
spin effects posing a serious challenge to theory. : '

7.1 At Intermediate Energies

7.1.1 Overview

Since the mid 1970’s, the so-called meson factories, in particular, TRIUMF,}
LAMPF,? SIN,* and SATURN have measured systematically elastic and in-
elastic NN scattering up to about 1 GeV lab. energy. Today, the pp phase-
shifts are determined well up to 1 GeV, and the np phase-shifts likewise
to 500 MeV and tentatively at 800 MeV. Our understanding of inelasticity
has progressed particularly since 1980. Extensive data on pp — dr* have
been taken such that the six amplitudes for this process are known with
confidence up to 800 MeV. Intensive work on pp — pnwt is in progress.*
In previous sections we have seen that a characteristic feature of the
" nuclear potential at low energies is its rich spin structure. We also saw that
the exchange of various mesons typically offers such a rich spin dependence.
However, in recent years it has turned out that above the inelastic thresh-
old this spin structure is even richer, so rich that even new phenomena like
dibaryons (baryon-baryon resonances) have been suggested for their expla-
nation. The excitation of one A(1232) at about 600 MeV lab. energy puts
the most decisive signature on the elastic and inelastic scattering parame-

" ters. Pion production proceeds essentially through this process. Therefore,

one pion production is dominant up te 1 GeV, though the threshold for
two pions is at about 600 MeV. At low energy, we found that the virtual
excitation of the A isobar is indispensable for a realistic description of the
intermediate range attraction of the nuclear force as provided by the 2w
exchange (Section 5). This ingredient of the nuclear force is now found to
be equally crucial at intermediate energies — for pion production as well
as for the explanation of characteristic structures in the elastic scattering

LTRI-University Meson Facility, Vancouver, Canada. _

Los Alamos Meson Physics Facility, Los Alamos, New Mexico, U.S.A..

3G hweigerisches Institut fiir Nuklearforschung, Villigen, Switzerland.

4For recent reviews of the status of NN physics up to 1 GeV see Bugg (Bug 81 and
85). ' - : . _
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~ parameters, This fact provides further support of and confidence in the
basic ingredients of meson models used in nuclear physics.

Inelasticity plays the central role in NN scattering at intermediate ener-
gies. It is closely related to the controversial and exciting issue of dibaryon
resonances. Furthermore, it poses a clear structure on elastic scattering.
The most important ‘conventional’ inelasticity in the energy regime under
~ consideration is the NN — NA threshold at 600 MeV (GV 83). Because of
isospin conservation it can occur in isospin T' = 1 two-nucleon states only.
Double A excitation, possible for both isospin zero and one, Las its thresh-
old above 1 GeV. NA excitation appears first in Dy with Lya = 0, where
Lya denotes the relative orbital angular momentum between nucleon and
delta. Lya = 1 contributes to °F; showing its distinct signature typically
at a slightly higher energy compared to 'D; because of the higher angular
momentum. This angular momentum also contributes to °F, P, °P;, and
3P, however not so pronounced. At still higher energies Lya = 2 folds into
¢, and 'S,. Below A production , i. e. below 425 MeV, pp — dn* is the
main source for inelasticity which appears first in *P; and 'D,.

Dunng the past decade, speculations on the possible existence of dibaryon
resonances have blossomed considerably. Presently, there is no firm evi-
dence for such exotic states. However, the possibility cannot be excluded
that conventional resonances (i. e. NA or AA bound or virtual states)
“'might exist in association with inelastic thresholds.

' The excitement started when, in pp scattering, Auer et al. (Auet 77
~ and 78) at the Argonne ZGS® observed peaks in '

Ao‘i": Gtag(_}) — U{of(:)1 o (7.1)

.the difference in total cross sections measured with longitudinally pelarized
beam and target with spin parallel or opposed (for more details see the
‘reviews by Fernow and Krisch (FK 81) and (Yok 80, BLS 80)). A similar
peak has been found (Bie+ 78) in

_ Aa’;trat = 0wa(17) — oeae(TL), - 7 (7.2)

the corresponding measurement with transverse spin orientations (FK 81),
see Fig. 7.1. Hidake et al. (Hid+ T77) proposed that the peak around

3Zero Gradient Synchrotron, Argonne National Laboratory, Argonne, Illinois, U.5.A.
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550 MeV is due to a D; resonance and the inverted peak in Asf* around

800 MeV to a °F; resonance. Indeed, phase shift analyses of elastic data
have revealed counter-clockwise loopings in the Argand diagrams of D;
and %F; (and also of °P, and 'Gy), Fig. 7.2. It was suggested these might be
manifestations of new degrees of freedom, such as the dibaryon resonances
suggested by the quark bag model (MAS 78). :

If one calls these structures resonences is pretty much a matter of taste
and interpretation.! One may be stubborn and say if something looks like
a resonance in an Argan plot, it is a resonance. However, in this wey not
much of the real physics is disclosed. In a more conservative approach,
one would first try to explain things as far as possible by conventional
‘means. In fact, it turns out that the threshold NN — NA gives at least
qualitatively the observed resonance-like structures; in particular, it leads
typically to half-loops in the controversal partial waves. The explanation
of the observed structures in Ao and Ao’ can then be given as follows:
The D, NN partial wave contributes positively to both cross-section dif-
ferences with weight (2J +1); °F5 contributes only to A with a negative
sign and a weight of (2J + 1); finally *P; contributes negatively to both
observables. The shapes are then explained by the inelastic threshold in
1D, which appears typically at lower energy than in %F3 and °P;.

" Theoretical models explain the cross section differences up to the degree
of quelity to which they reproduce the phase ghift analysis, especially in
the three critical partial waves mentioned. In fact, this is where almost all
models share common deficiencies. Due to the dependence on a delicate
balance between, particularly, 'D,, °Fs and °P,, small deviations in the
predictions of & model from the phase shift analysis in these partial waves
are ‘blown up’ in the predictions for the cross section differences (compare
~ Fig. 7.1 and 7.9). This magnifying effect essentially explains the poor fit of

* the spin-dependent total cross section differences by theory (Fig. 7.1). Note,
however, that qualitatively the energy-dependent structures are reproduced
coi're_ctly. |

SFor a thorough discussion of the issue of dibaryons see the recent review by Locher et
al. (LSS 86).



‘104 | ' ' SECTION 7. NN ABOVE THRESHOLD

7.1.2 Status of Theory

On the theoretical side, one can distinguish between two frameworks: cou-
pled two-body chaunels and three-body equations.

- The coupled channel method was started by A. M. Green in the early
70°s. The original purpose was to calculate the medium effects on the
nuclear force when inserted into nuclear or neutron matter due to isobar
degrees of freedom (GH 74, GN 75, Gre 79). Later, this work was extended
to higher energies (GNS 78, GS 79). In this a.pproa.ch one solves a system
of coupled equations for the 7-matrix: :

= i ViegrTe; | _ . .(7'3)‘

where the V;; are the so-called transition potentials with i and j = 1,2
or 3, and 1, 2 and 3 corresponding to NN, NA and AA, respectively; g
is the appropriate two-baryon propagator. The coupled cha.nnel typically
generates diagrams of box shape, the most important ones (for the cre-
ation of the intermediate range attraction as well as for the production of
inelasticity) being shown'in Fig. 7.3.

Existing models differ essentially in two details: ﬁrst by the transition
potentmls used, which can be either relativistic (FT 84 and 86, HM 87, Els
86, Els+ 87) or non-relativistic (Lom 82, Lee 83 and 84, PSZ 87); second,
by the imaginary part in the propagator gx, for which either some reason-
able ad hoc assumption based on the empirical A width is made (GNS 78),
or the seli-energy of the A (and in some cases of the nucleon), see Fig.
7.4, is' calculated more or less properly (FT 84, HM 87, Els 86, Els+ 87).
Apart from a real contribution which is readjusted to the empirical mass,
this produces an imaginary part for the A mass (the ‘width’) which ex-
plains most of the inelasticity in the energy range under discussion. This
is quite understandable since in the self-energy diagrams, Fig. 7.4b, the A
is coupled strongly to its N decay channel. Another source for 1nela.st1c-
ity is the nucleon self-energy, Fig. 7.4a, which provides only a very small
contribution;” however, it is the only one in 7 = 0 up to AA production.
This is why the inelasticitiy in T' = 0 states is so small for low energies (see

"This can be understood from a comparison of the coupling constants — f3 ../ 4m =
0.08 while f3,, /47 = 0.35 — and the fact that the nucleon is not a resonance.
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Fig. 7.9). Furthermore, there is inelasticity coming from the pion propa-
gator (dashed lines denoted by ‘r’ in Fig. 7.3), since the pion can be real
above threshold. This effect can be taken into account only by non-static
theories (propagators). It has turned out that this inelasticity is important
for °F; (see below), while it is irrelevant in all other states. :

Nowadays, all realistic models of the coupled channel type use = and
p exchange for transitions from two-nucleon states to states involving A. 8
Examples are given in Appendix B. The coupled channel method is suitable
to compute phase shifts and inelasticity parameters for NV scattering.
The NN — NA T-matrix ¢an be exploited to predict pion-production
observables; if the wd channel is mcluded e. g. pp — md spin observables
can be calculated. .

The original motivation for the approach using three-body equations was
to describe elastic scattering of pions from deuterons in a realistic way (AAY
68, Aar 77, AT 74, AM 83). The enormous work done by several groups
(RT 77, FLM 80, KS 80, KS 81, Gar 82, Gar 87) differs in details and
in philosophy. In some of the work (BA 81, BL 81, Rin 83), the major
emphasxs has so far been on the pp — dr reaction. Kloet and Silbar (KS
80, KS 81) and Sammarruca (Sam 88) have concentrated on calculating
spi_n observables for the three-body final state, NN — NNm (Dub+ 81,

. DKS 82, DKS 87). -
~ All approaches and models mentioned have in common that they in-
volve only known mesons and baryons together with the usual effective
‘meson-baryon interactions, i. e. they do not use dibaryons or any other ex-
otic input. Resonance-like structures, if predicted, emerge simply through
conventional meson-baryon dynamics (Figs. 7.1-2). Total cross sections
as predicted by the three rather different theoretical models, which were

applied for Fig. 7.1, are displayed in Fig. 7.5.

Furthermore, in Figs. 7.6-7.10 we show more predictions from two

* coupled-channel models (full line and dashed). Both models use relativistic
transition potentials to A states with m and p exchange and a full relativis-
tic OBEP (with reduced o) for the NN — NN potential. The model by
(Els+ 87) (dashed line) also includes nucleon renormalization (Fig. 7.4a)
and uses & non-static pion propagator which — as discussed — leads to a
characteristic signature in the ?F3 phase parameters (Fig. 7.9). The better

8Note that due to the A-isospin of % only isovector bosons can be exchanged.
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fit of the P-waves by Model I (full line) is essentially due to a larger w
coupling and the neglect of the N-renormalization; the larger inelasticity
produced by this model may be related to the neglect of the momentum
- dependence in the A-bubble (Fig. 7.4b). Note that 27w production starts
around 600 MeV. Model I predicts all € parameters up to 1 GeV (Fig. 7.10)
~ correctly including the difficult ¢; and e,.

In general, all models are able to reproduce gualifatively the special
tendencies in D and ®F}, regardless the details of the theory. On the other
hand, with regard to quantitative predictions there are (about the same)
deficiencies in all models. As far as [, is concerned, it seems that the
inclusion of the md channel improves the inelasticity below 600 MeV (Sam
88). In general, all conventional models tend to underestimate it above A
threshold. For °F; the quantitative predictions of all models are in general
worse: the phase shift does not show enough attraction around 650 MeV,

- while the inelasticity is poor just about everywhere. '

The total cross sections for pp and np are in general reproduced well up
to 2 GeV (Fig. 7.5); the inelastic cross sections are presumably too small,
particularly above 1 GeV. This is not astonishing since other resonance
than the A must play a role in that energy region which are omitted in the
present models. The N*(1470) has been included by Lee (Lee 84), who finds
only a small effect; there:are, however, many more resonances (PDG 84).

. pp polarization up to about 650 MeV is described well (Fig. 7.6),° while
the np polarization is predicted only qualitatively correctly (Fig. 7.7). The
np differential cross section at 640 MeV is reproduced accurately by Model
I (Fig. 7.8). The predictions we show in Figs. 7.6-7.10 for two examples
of coupled channel models only are representative for those from any other -
~existing model in the field.

Predictions by OBEP (dotted line) are also shown in the figures; by
comparing them with the coupled channel results, the characteristic struc-
tures produced when A-isobars are included in the theory can be observed
(of course, OBEP does not generate any inelasticities).

Summarizing the results, we like to stress that conventional models of
mesons and baryons are so far able to explain a substantial amount of
data on NN scattering at intermediate energies. The agreement is in some

9The energies of the experimental data displayed in Figs. 7.6-8 are always sufficiently
" close to the denoted energy of the predictions, such that the comparison is meaningfull.
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cases only of a qualitative kind; however, none of the available models is
‘complete’ taking all possible hadronic contributions into account. For ex-
ample, crossed two-pion exchange which had proven to be crucial at low
energies (Section 5), has not been included in any model yet. However,
above threshold the inclusion of such diagrams would imply that four-body
unitarity must be satisfied. This is a huge task. As mentioned, also baryon
resonances other than the A should be considered. Thus, missing agreement
by present models can very well be due to approximations and restrictions
used. Consequently, for the energies under consideration, there is in the
moment no need to invoke new (quark) substructures (like exotic dibaryons)
to explain the present data. However, it is highly desirable that the present
models are substantially improved such that clear conclusions with regard
to the origin of the present quantitative problems can be drawn. Like-
wise, more reliable and ‘complete’ hadronic models would allow for more
conclusive insight into the question of the necessity and possible role of
non-hadronic ingredients in nuclear physics at intermediate energies.

7.2 The GeV Reéion

Data on total and differential cross sections for proton-proton scattering
at energies of several GeV and more are available since the 1950’s, as this
reaction has been used in particle production. These data can be explained
in terms of a simple optical model (Ser 63) which by itself does not reflect
much excitement. Therefore, these observables of NN scattering do not
provide much insight into the NV interaction at high energies.

The picture changed completely with the event of high energy polarized
proton beams. Pioneering work was done by the Michigan group at the
Argonne ZGS in the early 1970’s (see the review by Fernow and Krisch
(FK 81) for an overview). Subsequenily this group and others performed
numerous experiments that studied spin effects in high energy strong in-
teraction physics using polarized proton beams in the energy range of 1-12
GeV/c incident lab. momentum. These high energy polarization experi-
ments present a benchmark, comparable to the Chamberlain experiments
around 1957 (Cha+ 57). As the old experiments were decisive for our
understanding of some important features of the nuclear force (spin-orbit
force), the recent experiments could have a strong impact on our present
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thinking. It may go so far that we have to change our present view of QCD.
~ For elastic pp scattering, the analysing power A, the spin-spin correla-
tion parameter A,.,, and the ratio of spin-parallel and spin-antiparallel cross
sections at 6 and 12 GeV/c have been measured (FK 81). The amazing
result in all cases are strikingly large spin effects. o
Hulthage and Myhrer (HM 84) have shown that the NN polarisation
deta obtained at the Argonne ZGS (Die+ 75, Yok 80) for piap ~ 2 GeV/c can
be explained in terms of vector boson exchange using conventional choices
for the coupling constants. Note that for the given lab. momentum, the
¢.m. momentum is ~ 770 MeV/c which is about the mass of the omega
and the rho meson. Thus, vector boson exchange provides the correct LS
strenght even at these high energies. o
- At even higher energies, i. e. 12 GeV/c ZGS energy and, more recently,
28 GeV/c at the Brookhaven AGS'®, the polarization data pose a serious
theoretical problem. Particularly the sharp rise in the data on A at high p,
is quite unexspected (Kri 85). Assuming quark independence, the conven-
- tional quark model of the nucleon predicts A = 0 for those high momenta.
This is certainly a challenging theoretical problem for the future.

1 Alternating Gradient Synchrotron, Brookhaven National Laboratory, Upton, New
York, U.5.A..



SECTION 7. NN ABOVE THRESHOLD 109

30 , , :
pp
Aot 4 e
- 10 I ".. ----------- ]
s _-_','/'\{lloil-'o- ~el g
E l’ \__
e al _10 | "‘ .
-30 S I |
0 05 1 15 2
Lab. energy ( GeV )
30 : , | .
. PP
— 10 'r' “‘\ _
a AN
£ - ‘N-l' —'--'__-_.——r-'...-_-.-.
— 10 " Ao T --;_._, Pl hrs 7
]-'/;' Sgn
-30 * | s
0 05 1 15 2
Lab. energy { GeV)
30 : : :
np
—— 10 AGT ;-__f"i ———————————
’E /’L\-‘L"—‘-;
- g0 b g te--mmmmmS
AO-L // L
—30 ‘ I | _
0 05 1 15 2

+ Lab. energy { G&V )

Figure 7.1: Total longitudinal and transvers cross section differ-
ences for pp and np scattering as denoted. The solid curve represents
the prediction from the coupled channel Model I (of Appendix B), dashed
from H. Lee (Lee 84), and dotted from Kloet und Silbar (KS 81). For data
see (Arn 87).
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the data analysis by Arndt (Arn 87). :
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]
.
-

Figure 7.3: Some diagrams invelving A isobars (double lines) gen-
erated in a coupled channel model using 7- and p-exchange tran-
sition potentials.

{a) ' ib)

Figure 7.4: (a) Nucleon and (b) A isobar self-energy diagram in-
volving the pion (dashed line). ' '



112 T SECTION 7. NN ABOVE THRESHOLD

8O —_— |
tol
60 bp g i
o gt te0se o5 L]
E A0 - e AT T T T
o "  TTTTEeeal, :
T 20 _&M L
0 ' -
0 - 05 1 15 2
Lab. encrgy ( GeV )
"10 T T T
£ 20 |
0
0 05 1 15 2
Lab. ecnergy ( GV )
80 - T - ] T
g
60 ,_\ p O.’Lot |
— ° : :
\ — ——
—E t0 '\. ~gs® efe o e e w0 "0 @ o
- ~a_ozBe .
20 + . O'm 4
N e
0 ‘ - |
0 05 1 15 - 2

Lab. cnergy ( GoV )

Figure 7.5: Total and inelastic cross sections, o' and ¢™, respec-
tively, for pp and np scattering as denoted. Theoretical curves as in
Fig. 7.1. For data see (Bl 82, Arn 87). '



- SECTION 7. NN ABOVE THRESHOLD 113

B (dop)

Figure 7.6: Predictions for the pp polarization at 5650 and 644 MeV
lab. energy. Full curve from the coupled channel Model I (of Appendix
B), the dashed from (Els+ 87), and the dotted curve from the OBEP of
Section 4. Full symbols denote data from SATURN, open symbols SIN or
LAMPF data (BL 82, Arn 87).
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Figure 7.7: Predictions for the np polarization at 525 and 800 MeV
lab. energy. Notation as in Fig. 7.6.
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Section 8

Some Related Hadronic
Interactions |

In the 1850’s it hecame clear that the nuclear force is not the only strong-
interaction in nature. Nowadays, the unified description of strong interac-
tions including the mass spectrum of hadrons is attempted by QCD. On
the background of this fundamental theory, meson theory plays the role of
an effective quantitative model for the low energy regime. The Skyrmion
model or lattice QCD may provide the justification for this approxima-
tion. The amazingly quantitative character of meson theory for the case of
the nucleon-nucleon system has been demonstrated convincingly in previ-
ous sections. Most work presented for N NV uses field-theoretic perturbation
theory starting from certain well-defined effective meson-baryon interaction
Lagrangians. These interactions have implications for other meson-baryon -
and baryon-baryon processes. Therefore, it is natural to ask the question:
Hiw about these other related strong interaction processes at low energy — -
does the meson model make equally realistic and even quantitative predic-
- tions as in the case of N N7 The answer to this question is important with

regard to the credibility of the whole concept of meson theory. If meson

theory works for NN and fails everywhere else, one should hetter forget
about it and use equally well any other mathematical ansatz for the nuclear
potential which fits the data. However, the success of the meson-exchange
currents in describing the electromagnetic properties of nuclei is another in-
dependent piece of evidence for the relevance and for the reality of mesons
in nuclear physics. Hadronic reactions other than NN provide further sup-

122



SECTION 8. SOME RELATED HADRONIC INTERACTIONS 123

/// / ’/
/ vy
A )
~ PN N
S
~ \ \
(a) C (b) -+ {e)

Figure 8.1: Diagrams contributing to the N interaction. The full
line denotes a nucleon, the dashed a pion.

port There are some key processes of strong interactions which have drawn
particular interest, for example # N, AN, £N, and NN. Whereas the re-
lationship between N and NN is of dll‘ECt nature, the interaction with
hyperons can be related via flavour SU(3); for the real part of the NN in-
teraction (G-parity provides a bridge. In this section we will briefly discuss:
some of these examples '

8.1 Pion-Nucleon Scattering

The ‘elementary’ meson-baryon interactions, from which we have built the
NN interaction in previous sections, has implications for meson-nucleon
scattering. The mV system is of particular interest; comprehensive and
precise data exist on 7V scattering, phase-shift analyses are available. The
. key question from the theoretical view point is if, what we have assumed
“in the case of NN, is counsistent with what is known about *N. When
dlspersxon relations are used, we have no problem with that question, as
the consistency is buill into the theory.

- The situation is different for an approach which uses Lagrangian field
theory. In analogy to the model for the 27 exchange discussed in Section 5
(Fig. 5.2), we display in Fig 8.1 diagrams which contribute to 7N scattering.
Appropriate assumptions for the prm vertex can be made (FS 80). All
other vertices also occur in the NN model and are therefore fixed. In
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Figure 8.2: Imaginary part of the #N T-matrix in the Py, partial
wave versus the total energy, W, of the n/N systemm. Solid line:
“contribution from diagram Fig. 8.1a; dash-dot-dot: diagram Fig. 8.1a+b;
dash-dot: all diagrams of Flg 8.1. [From (Els 86)] '

Fig. 8.2 we show resn]ts for the Py; partial wave of #N scattering. The ~
individual contributions from the various diagrams are shown explicitly.

A o-contribution (analogous to the p-diagram, Fig. 8.1b), which is not
~ shown, raises the amplitude above resonance further bringing it close to
the empirical curve. (The dotted line in Fig. 8.2 represents the empirical -
result from Hohler et al. (Hoh+ 79)). It is clearly seen, how the individual
contributions build up the complete amplitude step by step. Thus, it is
possible to describe cousisteutly =N, = (FS 80), and VN w1t111u one
fieldtheoretic model.

An important issue is the 7NN and TNA vertex cutoff A,. Mod-
els for the NN interaction use typically A, £ 1 GeV. Below that value a
quantitative reproduction of the low energy NN data -—— in particular the
deuteron data — is impossible (Section 4). On the other hand, models
for 7N Irequently apply a substantially lower value for that parameter,
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- namely A, = 0.4 GeV. However, such models use only the A pole graph,
Fig. 8.1a. The substantial discrepancy between these two choices for the
cut-off parameter poses a serious problem. Figure 8.2 indicates the pos-
sible solution of that problem. When all contributions to the *N process
are taken into account which are consistently implied by the fieldtheoretic
model for NN, a quantitative description of the P33 amplitude is, indeed,
possible using the same parameters as in NN. It is also clearly seen that
the direct A contribution alone applying the large cutoff parameter from
NN would provide a conipletely insufficient description of that amplitude.

- We note that the present discussion, as far as the TN system is con-
cerned, applies only to the Py; partial wave. For a recent discussion of
the S-waves and the P;; we refer the interested reader to the papers by
Jennings and coworkers (CJ 86b, Coo+ 87) and by Pearce and Afnan (PA
86), respectively. : ‘

8.2 The NN Potential |

As a Dirac particle, the nucleon has an anti-particle state, the anti-nucleon
(V). Soon after the experimental discovery of the anti-proton in the Berke-
ley Bevatron in 1955 (Cha+ 55) the interaction between anti-nucleons and
nucleons at low energy was studied extensively (for summaries of this early
work see Seg 58 and Mcc 60). On the theoretical side it was realized that in
the framework of meson theory the NN and the NN interactions are most
intimately related by the so-called G-parity rule (IH 56, BC 58) According
to this rule, a NN potentml glven by

Vn =3 Vo ' (8.1)

with V, a well-defined ¢-channel meson-exchange contribution (see Section
3.4), implies the NN pot_en‘tialr

| VNN ZC'I | | (8.2)

where GG, denotes the G-parity of the exchanged mes_on(s).’ For a system «
consisting of n, pions the G-parity is

Ga = (~1)™. (83)
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This transformation can also be defined quite generally (IZ 80) implying a
definite G-parity for every meson and system of mesons. Considering the
.six bosons usually applied in one-boson-exchange models (Section 3 and 4,
Appendix A), namely 7, n, o, p, w, and §, the contribution from three of _
them switches sign, nameiy T, W, and 5.t As a consequence, the one-omega-
exchange, which provides the short range repulsion in the NV interaction,
is attractive in the NN system and adds to the attraction from 27 exchange.
Thus, the NN potential is strongly attractive at short distances and does
not have a repulsive core. This implies an enhancement of the N N cross
section as compared to NN (BC 58). To give an example, at 230 MeV lab.
energy the total (elastic) cross section for neutron-proton scattering is 39
mb; at that same energy the cross sections for proton-antiproton scattering
~ are, total: 137 mb, elastic 50 mb, and charge exchange (1 e. pp — ni): 11
- mb.

The close connection between the NN and the NN potential, encour-
aged early hopes that an analysis of the N N observables could provide -
additional constraints on the meson exchange model of the NN force (Pln
67, BP 68). However, in practice the usefulness of the G-parity rule is
limited to the loug and intermediate range part of the potential. At short
distances, the annihilation is dominant in N N, a feature which has no ana-
logue in the NN system at low energies. Since the N N system has zero -
baryon number, it can dissolve into mesons, the mean multiplicity of pions
being about five for the low. energies under consideration. The annihilation
cross section is lalge about twice as large as the elastic. '

In early work, either boundary models (“black spheres”) or purely phe-
. nomenological potentials were used to describe the annihilation. ? For ex-
- ample, Bryan and Phillips (BP 68) and Dover and Richard (DR 80) assume
a complex potential of local Woods-Saxon form with no spm- and isospin-
dependence:

o Vo +1Wo
1+ exp(=E)

~ with V; and 1V, real constants and I and n parametrizing the range. This
is added to Vyg, Eq. (8.2), lo obtain the total optical potential for low

o) = - (8.4)

INote that the decay of the 7 meson into three pions is of electromagnetic nature,
therefore the 7 is not a strong 3 resonance; G, = +1, G4 = —1 (PDG 84), cl. Table 3.2.

*For a useful survey of the theoretical studies during the early period see the review
by Phillips (Phi 67). :
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energy NN scattering:
ol — gl 4 Vg | (8.5)

'The parameters of the absorptive potential, as obtained from phenomeno-
logical studies, are typically of the following orders:

0 <V, £ 21GeV
0.5 CeV < Wp < 62 GeV (86)'
0 < R < 08fm '

a =~ 02fm

where the larger ranges are in general associated with the smaller Vo and
W, and vice versa; in this way the strenght of the absorptive potential
‘around 1 fm is about the same in all cases, namely in the order of 100
MeV. For example, using the (G-parity transformed) OBEP of Section 4
complemented by the annihilation potential Eq. (8.4) with Vo = 0, Wy = 8.3
GeV, B = 0, and a = 0.2 fm, one reproduces the present low energy NN
cross section data (MMM 87).°

The strenght and the range of the annihilation potentials, necessary
to fit the data, are difficult to understand from the theoretical point of
view (DR 80). The W, necessary in the case of a short-ranged annihilation
potential appears rather large; on the other hand, if a more reasonable value
of Wy is applied, e. g. in the order of 1 GeV, a long range has to he used
(R ~ 1 fm) for which the theoretical interpretation poses some problem.
' In the traditional picture, in which nucleon and antinucleon annihi-
late into mesons, the range of the annihilation is essentially determined by
baryon-exchange. This argument suggests a range for the absorptive po-
tential in the order of (2M)~! (Mar 61). The most consistent work along
" this line of thought has been done by the Paris group (Cot+ 82). From
detailed calculations of annihilation diagrams with two meson intermedi-
~ ate states, they derive an annihilation potential which is energy-, spin-,
and isospin-dependent and which is of the short range indicated. In other
work the annihilation range is in general much longer, in-the order of 0.5-1
fm (DR 80). This is also true for the work by the Nijmegen group (TSS

* 3The annihilation parameters used in this model are the same as in the Bryan-Phillips
potential (BP 68) in which the OBEP. of Bryau-Scott (BS 64 and €9) is applied.
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84), who developed a coupled channel model and assume spin- and ; isospin-
dependence.

From a more modern point of view, NN annihilation should be a good
test of quark/gluon dynamics at short distances. The crucial question is if
a connection between the microscopic and the phenomenological forms of
the annihilation potentials can be established. Quark rearrangement and
quark annihilation into gluons has been considered (GN 84, TMM 85). In
spite of the considerable work already done, the theory for this part of the
NN interaction is still in its infancy. Much more work is needed in the
future for which more precise data could provide a welcome guldehne for.
the theoretlca.l efforts.

The long and intermedjate range NN potential is on safer grounds (if
one believes in meson theory). It has become customary and it is, in fact,
revealing, to discuss the contributions to this part of the potential under
the aspect of coherence (BDR 79, DR 79). As explained in Section 3.4, in
the meson-exchange picture the central forces are provided essentially by

‘the o and the w. These have opposite sign for the NN system, while they
add up to a strong short range attraction for NN. The spin-orbit forces
created by these two bosons add up in NN; they cancel in the NN system,
for which, therefore, a weak LS force is predicted by meson theory. The
tensor forces provided by = and p exchange are of opposite sign in NN and
add up coherently in NN. Consequently the real part of the NN poten-
tial shows substantial qualitative differences from that for NN, namely a
much stronger central attraction, no repulsive core, a much weaker spin-
orbit force and a stronger tensor force, particularly at short range (compare
Figs. 3.6-8). In particular, spin-observables are sensitive to these charac-
teristic differences between NV and NN. Except for very few and rough
measurements of the polarization there are no data available on spin ob-
servables for NN. To measure those will be a worthwhile experimental
program for the future. The effect of coherent meson-exchange contribu-
tions in the medium and long range show up drastically in predictions for
spin observables, particularly in the charge exchange channel. For example ‘
the NN pola.rxzatlon 1s extremely sensitive to the tensor force (DR 82), in

contrast to NN where the spin-orbit force plays the dominant role for thc
polarization (GT 57}, see Fig. 3.4. Therefore, a careful mesurement of NV
spin observables could provide a constraint on the strenght of the various
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Yukawa couplings in a meson exchange model. LEAR? may provide such
deta in the near future. Thus, early hopes (Phi 67, BP 68) may finally be
justified. .

As we learned in Section 5, a more refined meson theory uses an explicit

model for the 27 exchange and necessarily has to include the 7p diagrams.
These contributions replace the fictitious ¢ boson customary in one-boson-
exchange models. This refinement of the meson-exchange mode} for NN
has consequences for NN. First, the explicit 27 exchange is more atirac-
tive than a o boson, particularly at short ranges. Second, the mp exchanges
which are repulsive in NN, thus reducing the short range ettraction pro-
vided by 27, turn attractive in the N N system, due to the G-parity rule (mp
is a three-pion exchange). Thus, a refined meson model predicts substan- -
tially more short range attraction for the NN potential than one-boson-
exchange models do. As a consequence, the amazingly large values for Vo
and W, (Egs. (8.4 and 8.6)) needed by present models may considerably
reduce. :
-+ There is another exciting point about the N N system, namely the pos-
gibility of NN bound states or resonances, so-called baryonia. More pre-
cisely speaking, hadronic states which, while massive and mesonic, would
be strongly coupled to the baryon-antibaryon channel and relatively weakly
coupled to standard mesonic channels, are referred to as baryonium states.
Both experimentally and theoretically the speculations have been flour-
ishing during the past decade. However, presently the situation is rather
unclear. From the theoretical point of view, such states appear quite likely,
because of the strong short range attraction in the real part of the NN
potential as obtained from meson theory. However, it has been questioned
if such narrow structures survive the strong annihilation potential (MT 76),
the answer depending most sensitively on the annihilation radius. Further-
more, quantitative studies show a large sensitivity to the uncertain short
range part of the force. Theoretical considerations based upon potential
models are treated in (BDR 79, DR 79, Sha 78). QCD inspired work is
reviewed in (MRV 80). On the experimental side, early indications for
baryonium states (KT 75, Pav-+ 78) have not been confirmed. For a recent
summary and for more hope see Dover (Dov 84, Dov 86).

In summary, meson theoretic potentials complemented by a (phenomen-

4Low Energy Antiproton Ring, CERN, Geneva, Switgerland.
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logical) absorptive part can describe present NN data well. However, more
precise data, particularly of spin observebles, are needed to learn more
about the microscopic annihilation mechanism and the spin structure of
the real potential which differs in a characteristic way from the real NV
potential. Also, any more precise knowledge of the annihilation part of the
potential will put constraints on the real (meson-theoretic) part and, thus,
another more precise test of meson theory would be provided.

8.3 Strange Nuclear Interactions

~ The relationship between NN and YN (where ¥ stands for a hyperon)
is not as simple as in the case of *N or NN. The Lagrangians we have
used in conjunction with the NN problem bear no direct relationship to
the hyperon fields. However, if one believes that quarks are the ultimate
building blocks of hadrons, then flavour SU(3) implies relations between
meson-baryon coupling constants. Thus, when a meson-nucleon coupling
constant has been fixed by NN data, the corresponding meson-hyperon
coupling constant can be predicted. Models following these guidelines have
been developed, particularly, by the Nijmegen group (NRS 73, NRS 79).
The result of this work is that the existing Y N data can, indeed, be desnbed .
-~ quantitativly in that framework.
- However, the present AN and N data are not very precise. More
reliable experimental information is desirable, This would be a worthwhlle
‘program for future kaon factories. .

Also the (effective) interaction of hyperons in nuclei (hypernuclei) has
been studied for many years. Meson-exchange models have been fairly suc-
cessful in describing the binding energy of a A in a nucleus. However, there
are some cases in which a remarkable discrepancy between theory and ex-
periment exists. The case of § He is particularly outstanding. Conventional
models predict too much binding energy. There are suggestions that this
nucleus could be used to study the deconfinement of baryons in the nucleus
(Yam 87).

Another challenging issue is the spin-orbit coupling of hyperons with
nucleons. This coupling comes out weaker (by about a factor 2-3) as com-
pared to the nuclear force if the meson picture is applied (BW 81, Bro 81).
It is due to a weaker ¢ and w coupling as predicted by SU(3). Whereas for
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the A this prediction is in agreement with experiment, there appears to be
a discrepancy in the case of & hypernuclei. Present data (Ber+ 85) can be
interpreted such that the EN spin-orbit force should be at lenst as large as
that of NN, in contrast to predictions from meson models (Bro 81). How-
ever, the interpretation of the data is controversial (Dov+ 86). Predictions
using quark models contradict each other (Gal 85). In some quark model
estimates a large TV spin-orbit force is, indeed, obtained (Pir 79). The
exciting point about this issue is that a decision between the meson and
the quark model by experiment could in principal be possible. However,
in view of the present controversies on the experimental as well as on the.
theoretical side, it is too early to draw any conclusions.



Section 9

‘Nuclear Matter I —
Conventional

With this section we start the discussion of nuclear structure aspects us-
ing meson-theoretic forces. After dealing in length with the two-nucleon
system, it might appear natural to consider next further few-nucleon prob-
lems. Nevertheless, we will turn now to the system of infinitely many
nucleons, i. e. nuclear matter. The reason for this big step is that there are
substantial mathematical simplifications in the nuclear matter problem as
compared to finite nuclei. They are due to the translational invariance of
the system: first, the single-particle wave functions are known to be plane
waves (instead of, for example, solutions of the Faddeev equations — for the
three-body problem, or self-consistent Hartree-Fock wave functions — for
heavier nuclei); second, momentum conservation eliminates certain classes
of diagrams and yields equations which are diagonal in momentum space.
Because of these practical advantages, more systematic work has been done
for nuclear matier than for any finite nucleus. This is particularly true for
considerations including sub-nucleonic degrees of freedom, which are one of
the final goals of this and the following section. ‘

9.1 Introduction

By definition, nuclear matier refers to an infinite uniform system of nucleons
interacting via the strong force without electromagnetic interactions. This
hypothetical system is supposed to approximate conditions in the interior

132



SECTION 9. NUCLEAR MATTER I 133

of a heavy nucleus. We shall assume equal neutron and proton density, that
is, we will consider symmetric nuclear matter. This many-body system is
characterized by its energy per nucleon as a function of the particle density.
Empirical information on -the minimum of that curve — the saturation
point — is deduced by extrapolation from the properties of finite nuclei.
Based on the liquid drop model for the nucleus, the semi-empirical Bethe-
‘Weizicker mass formula provides a value for the energy via its volume
term (Wei 35, BB 36). An extended version of that formula, which takes
shell effecte into account, was given by Myers and Swiatecki (MS 69). A
collection of contemporary mass formulas by many different authors can be
found in the Atomic Data and Nuclear Data Tables (NDT 76). From the
charge distribution of heavy nuclei as determined in electron scattering, the
saturation density can be deduced by taking into account corrections due
to the Coulomb repulsion and the surface tension (Bra 64). Alternatively,
both the saturation energy and density can be deduced from Hartree(-Fock)
or Thomas-Fermi calculations with phenomenological effective forces fitted
to the ground state properties of closed shell nuclei (Neg 70, CS 72, FN
73, DG 80, WHW 83, Dut-+ 86, HS 81, SW 86). Thus, nuclear matter is
determined to saturale at a density c :

po = 0.17 £ 0.02 fm™ o (9)
and energy per particle | ' | | |
£/A=-16+£1MeV. - (92)

Of.her parameters related to the particle density are the interparticle spac-
ing r and the Fermi momentum ks which are defined by

'411'1'3/3 =1/p | (9.3)

and _ . .
p = 2k3/(37%). | - (9.4)

The equilibrium values for these quantities corresponding to the above given
Po are o
ro = 1.13 4+ 0,04 fm (9.5)

K =1.354£0.05 fm™ - (9.6)
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Also of interest is the incompressibility or compression modulus® of sat-
urated nuclear matter

, *(EJA(k
Ko O

(9.7)
From empirical information deduced from the systematics of the isoscalar
monopol vibrations (breathing modes) in nuclei (You+ 77, BGB 76, Bla -
80), one obtains ' ' ' ,
- K =210 + 30 MeV. - (9.8)

The fission barrier heights of actinides have been shown to depend sensi-
tively on the compression modulus (BGH 85). With an incompressibility .
consistent with the value quoted above, one was for the first time able to
reproduce the experimental barrier heights (Bar+ 82). A recent analysis of
the differences in the charge density distributions of 2°°Pb, on the one hand,
and 2°"P} or *°Pb, on the other, essentially confirms the above given value
s a lower bound {(Cav+ 87, CS 86b). It has been pointed out, however,
that in this type of analysis there is a large sensitivity to the effective mass
and to pair correlations which casts some uncertainty on this method for ex-
tracting K (Bar+ 86). In many-body calculations using density-dependent
phenomenological forces fit to the groundstate properties of closed-shell nu-
clei, values for the compressions modulus are obtained which agree with Eq.
(9.8) (DG 80, WHW 83). o

It is the objective of nuclear matter theory to explain these empirical
properties miscrocopically. ' '

9.2 History of the Conventional Many-Body
Problem

Historically, the first nuclear matter calculations were performed by Heisen-
berg’s student, Hans Euler, in 1937 (Eul 37). This was just two years after
Weizicker (Wei 35) had suggested the semi-empirical mass formula. Euler
applied an attractive potential of Gaussian shape in second order pertur-
bation theory.

IMore popular is the incorrect term of compressibility.
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Modern studies began in the early 1950's after a repulsive core in the
nuclear potential had been conjectured (Jas 51). It was obvious that con-
ventional perturbation theory was inadequate to handle such singular po-
tentials (e. g. & hard-core potential would give an infinite contribution in
each order). Therefore, special methods had to be developed. This program
- was initiated by Brueckner and coworkers (BLM 54, Bru 54, BL 55, Bru
55), who applied — for the groundstate problem of nuclei — methods sim-
ilar to those developed by Watson (Wat 53) for multiple scattering. Later,
a formal basis for this new approach was provided by Goldstone (Gol 57)
who — using perturbation theoretical methods — established the so-called
linked cluster expansion. The physics behind this new approach was re-
vealed, in particular, by Bethe (Bet 56). The success of Brueckner theory
in practical calculations stems from the fact that certain classes of linked
diagrams can be summed in closed form up to infinite orders defining the
so-called reaction matrix G. All quantities are then formulated in terms of
this G which — in contrast to the bare nuclear potential — is smooth and

wgll— behaved.

~ About at the same time when this new perturbation theory was for-
mulated, an alternative approach was suggested. Jastrow (Jas 55) recom-
mended the use of trial wave functions to be applied in a variational prob-
lem. However, the complexity of the problem which evolves when spin,
isospin, tensor and spin-orbit correlations are.included (all required in a.
_ realistic case) discouraged physicists from seriously pursuing this approach

in the 1950’s, When the discovery of pulsars (neutron stars) in the late
1960’s suggested the consideration of highly dense matter, interest in the
Jastrow approach was revived, as it is believed to be more relinble at high
densities than Brueckner theory.

: The first numerical calculations applying Brueckner theory were per-

formed in 1958 by Brueckner and Gammel (BG 58) using the Gammel-
Thaler potential (GT 57). In the following decade, substantial advances
were made in the physical understanding of Brueckner theory due to Hans
Bethe and his collaborator (BBP 63, Day 67, RB 67, Bra 67, Bra 70, Bra
77); furthermore, practical methods of (approximately or exactly) solving
the equation involved were developed (MS 60, KD 69) which gave rise to
first remarkable success (KB 66). Systematic and accurate calculations

were finally performed around 1970 (Sie 70, Coe+ 70, HT 70, Bet 71, Spr
72). An alternative formulation of Brueckner theory, the so-called coupled
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 cluster or exp(.S) method, was developed by Coester and Kiimmel (Coe 58,
CK 60, KLZ 78, BK 87). '

In the middle 1970's the nuclear many-body community was shaken by
an apparent discrepancy between results from Brueckner theory and the
variational approach. This indicated clearly that both theories had to be
re-examined and more consistent calculations had to be performed. For
Brueckner theory this was done in particular by Ben Day (Day 78, 8la,
81b). The variational approach was pursued mainly by Pandharipande
and Wiringa (PW 79).. As a result of this enormous work, in the early
1980’s, quantitatively very close predictions were obtained from the two
different many-body approaches using realistic NN potentials (LP 81, DW
85). Consequently, it is believed today that both many-body approaches
are reliable for densities typical for low energy nuclear physics, :

9.3 Conventional Theories

Conventional many-body theories are based on the stmplest model for the
atomic nucleus: - point nucleons obeying the mnon-relativistic Schrodinger
equation interact through a two-body potential that fits low energy NN
scattering data and the properties of the deuteron. There are several rea-
sons for starting a many-body study within this model. First, one wants to
know if under such restrictive assumptions, the prediction for the saturation
point of nuclear matter is unique. If this is not the case, i. e. if the predic-
tions vary for different potentials, then one might ask a second question:
namely, is there at least one potential which does predict nuclear matter
saturation correctly? Such a potential could then be used as a standard
- model for nuclear physics: NIV scattering and nuclear structure could be
understood in terms of the same underlying two-body force. Third, if such
a potential cannot be found, the results may be understood as an indication
that the simplest model is inadequate and extensions are necessary, such
as the inclusion of many-hody forces, meson and isobar degrees of freedom,
relativistic effects, the sub-structure of hadrons etc..
Thus, in this section we consider a system of A identical nucleons (in a
large box of volumn ) which obey the non-relativistic ‘Schrédinger equa-
“tion. The Hamiltonian of the system is the sum of the kinetic energies of
all the particles plus the sum of the two-body interactions between them,
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A A -
H=ST+3Vs (9.9)
i=1 i<j
The problem to be solved is to calculate the groundstate energy per particle,
£/A4, as a function of the particle density, p = A/, The minimum of this
curve will give the saturation values to be compared with the empirical
ones. '
In the variational method one chooses a trial many-body wave function
of the form

A ¥=F® (9.10)
and attempts to minimize the variational energy B
| | (8| FtHF|®) B o
var — m—ryy 9.11
For = ([T 011

which should provide an upper bound for the groundstate energy. Here,
® denotes the non-interacting Fermi gas wave function. For a central two-
body- potential, V{r), the correlation operator F' is usually chosen to be the
product of two-body correlation functions f(ri;),

A
F =1 flrs) (912)

. i<j
The f(r;;) are parametrized in some form and — due to the repulsive core
— should go to zero for small 7j;. At large rij, f(ri;) is required to approach
unity. For a realistic nuclear force the ansatz for the correlation functions
has to be generalized. Tensor force, spin-orbit force and other correlations
have to be taken into account. £y can be evaluated exactly by Monte
Carlo methods or approximately by means of cluster expansions. The most
. popular expansion uses the method of hypernetted chains. For more details -
about this many-body approach and its calculational techniques we refer
the interested reader to the reviews by Day (Day 78) and by Pandharipande
and Wiringa (PW T9). :

The Brueckner-Bethe-Goldstone method (in short: Brueckner theory)
is based on the Goldstone expansion (Gol 57) which is a linked-cluster
perturbation series for the groundstate energy of a many-body system. The
Hamiltonian is rewritten as :

H=H,+H (9.13)
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R

Figure 9.1: Diagramatic representation of the Brueckner integral
equation and G-matrix. Intermediate nucleon lines are particle states,
the double slash indicating the change of the propagator in the medium (as
- compared to the corresponding 7-matrix equation).

with the unperturbed Hamiltonian |

A _
Ho =3 (Ti+ 1) _ (9.14)
=1 -
and the perturbation
A A
H =) V;- YU, . (9.15)
i< i=1

Here, U7 is a single-particle potential that is at our disposal. Since the total
Hamiltonian does not involve {7, the final result should in principal be
independent of U. However, as the energy is calculated as an expansion in
powers of Hy, the convergence of that expansion will depend on the choice
of U. Thus, it is attempted to choose U such that the energy expansion
converges rapidely enough to be useful for practical calculations. '

 Because of the strong repulsion between nucleons at short distances,
the Golstone expansion is first rewritten in terms of the reaction matrix ¢
which sums-all possible rescattering of two interacting nucleons inte unoec-
cupied states. This infinite sum of ladder graphs, represented graphically in _
Fig. 9.1, is evaluated by solving the Brueckner (Bethe-Goldstone) integral
equation

_ Q , |
Glw) =V + V- G(w) (9.16)
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oo &

{a) (b}

Figure 9.2: Lowest order (two-hole line) contributions in the Brueck-
ner-Goldstone expansion with (a) the direct and (b) the exchange diagram.

where the Pauli operator @ projects onto unoccupid states. Physically,
defining the correlated wave function # in terms of the uncorrelated wave
function ¢ ‘

Gé = Vi, (9.17)

im:plying _ 0
v=¢+ w— H

the ladder sum builds into 1 the shori-range correlations induced by the
repulsive core. In free space, G reduces to the familiar T -matrix, and 3
simply corresponds to the exact scattering wave function defined by the
potential V.

o A perturbation expansion in powers of G is not convergent, but the
cluster diagrams can be grouped instead according to the number of in-
dependent hole lines (see Fig. 9.2 for two-hole line and Fig. 9.3 for some
three-hole line diagrams?). Formal arguments for the convergence of the
hole-line expansion have been given by Brandow (Bra 67). Accordingly, a
n-hole-line diagram should be proportional to x"~!, where £ measures the
probability that there is an unoccupied state below the Fermi surface. This
wound integral is defined by

G, (9.18)

x=p [ lo—vldr (919)

In lowest order (two-hole line contribution, see Fig. 9.2), the energy per
nucleon in nuclear matter at a density equivalent to a Fermi momentun kp

IWavy lines represent G-matrices, dashed lines with a cross U-interactions. Upward
directed arrows denote occupied states above the Fermi sea (particles), and downward
" directed artows denote unoccupied states in the Fermi sea (holes). '
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Figure 9.3: Some three-hole line (three-body cluster) diagrams that
contribute to the energy of nuclear matter. Exchange diagrams are not
shown.[Reproduced from (Day 78).] ' '

is given by
: f— 1 Z m|T[m Z (mn]G(w)Inin —nm) - (9.20)
with - _
' w = e(m) + e(n) . (9.21)
and ' ' |
e(m) = T(m) + U(m) ' (9.22)

the single particle energy. The choice for I/ suggested by (BBP 63, Bra 66)
is '
Lnckp (M0|G(w)lmn — nm) m < kp
'(m) = =tr 2!
U(m) { : 0 _ m > kp (9.23)
which produces a gap at the Fermi surface (standard choice). Alternatively, .
a continuous choice for U can be made (JLM 75, 76) by defining

U(m).z Re Y (mn|G(w)lmn — nm) (9.24)

n<kp
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Figure 9.4: Energy per nucleon, £/4, in nuclear matter versus the
Fermi momentum, kr, using the Argonne ¥;; potential (WSA 84)
[from (DW 85)]. Full lines (B) represent results from Brueckner-Bethe the-
ory, dashed lines (Var) show variational energles The shaded box denotes _
the empirical sa.tura.tlon area. S

for zll states m below and above the Fermi surface. In both definitions the
starting energy is chosen to be w = e(m) + e(n) (‘on-shell’).

Further details about Brueckner theory can be found in several excellent
books and review articles (Day 67, Bet 71, Spr 72, SF 74, Kéh 75, JLM
76, Day 78, Neg 82). The formulae involved in Brueckner calculations in a
more explicit form and methods for their numerical treatment are presented
in (HT 70).

The convergence of Brueckner results in terms of the hole-line expansion
is demonstrated Fig. 9.4 for the case of the Argonne Vi, potential (WSA
84); the number of hole lines taken into acenunt are given in parenthesis;
the error bars show the estimated uncertainty. The energies as obtained by
two variational methods are also shown; they are estimated to have about
the same uncertainty as the Brueckner curve (all results are from (DW
85)). Within these uncertainties there appears to be agreement between
the two many-body approaches. We will interpret this fact as a reason to
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Figure 9.5: Nuclear matter saturation as predicted by a variety
of NN potentials (see Table 9.1). Open symbols are saturation points
obtained in the two-hole line approximation, symbols with & cross denote
corresponding predictions with 3- and 4-hole lines included.

be confident in both theories at nuclear matter densities.  As Brueckner
theory is more versatile with regard to the types of potentials which can be
applied, and as it also allows — in a siraight-forward way — for extensions
of conventional many-body theory (see Section 10), we will subsequently
use Brueckner theory only. ' ' '

9.4 Results and Problems

Let us now return to the physics questions we raised earlier. Are the nuclear
ma.t.'ter predictions for all realistic potentials about the same and if not what
are the variations? In other words: Does the fact that all realistic potentials
fit the two-nucleon-data accurately (and almost ldentlcally) imply that they

predict identical results for the ma,ny—body system"' o
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Table 9.1: Nuclear matter saturation properties as predicted by
various NN potentials.

Potential Reference Pg” (%) & (%) E/A (MeV) - kp (fm™?)
HI HJ 62 7.0 21 R ] 1.27
BJ BI 74 6.6 — ~8.5 [~14.2] 1.36 [1.48)
RSC Rei 68 6.5 16 10,3 [-17.3] 1.40 [1.52]

Vi WSA 84 6.1 12 {19]  -10.8 [-17.8] 1.47 [1.62]
Paris  Lac+ 80 5.8 11 ~11.2 [-17.7] 1.51 [1.63]
HM1.  HM 75 5.8 11 ~11.8 [-16.9] 1.48 [1.56]

- Sch Sch 72 49 8 -20.2 1.85

- UNG UNG 73 4.4 5 -23.3 1.87
C Table A1 56  8.1(14.4) -12.1(-16.2) 1.54 (1.55)
B Table A.1 5.0 6.6 (12.5) -14.0 (-18.0) 1.61 (1.62)
A Table A.1 44 5.4 (111) -17.1(-20.7) 1.74 (1.75)

" Given are the saturation energy, £/A4, and Fermi momentum, kp, as obtained in the
two-hole line approximation using the standard (the continuous) choice for the single
particle potential. Results including 3- and 4-hole line contributions are given '
in square brakets.

The woundintegral x is given at kp = 1.35 fm

PB” is the predicted %-D-state of the deuteron.

-1

The answer to these questions is displayed in Figs. 9.5 and 9.6 and Table
9.1. It can be summarized as follows: There are substantial differences in
the predictions both for the saturation energy and density. Qualitatively,
all potentials predict the right sign and order of magnitude; however, no
potential predicts nuclear matter saturation correctly. In fact, the irony
of the fate is that, in spite of rather large varistions in the predictions,
these variations take a course which is such that the empirical area is ex-
actly avoided. It has become customary to denote this phenomenon by the
Coester band (Coe+ 70). This Coester band structure of the results has
also been confirmed by systematic calculations using phase-shift equivalent
potentials {Coe+ 70, ACS 70, HT 71). From Fig. 9.5 it is also seen that
the inclusion of 3- and 4-hole line contributions leads to a new ‘improved’
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Figure 9.6: Same as Fig. 9.5 with some saturation curves drawn

explicitly. For full lines the standard choice for the single particle potential

is used; the dashed line is obtained with the continuous choice.

Coester band; however, the improvement is obviously insufficient to explain
“the empirical saturation point. In all calculations of Fig. 9.5 the standard
choice for the single particle potential is used. However, what we just dis-
cussed is also true for calculations which employ the continuous choice (see
dashed curve in Fig. 9.6 which is for Potential C'). It is also seen from
Fig, 9.6 that a lowest order calculation using the continuous choice (dashed
curve) resembles much of the results from standard calculations which in-
clude 3- and 4-hole line contributions. This fact was first polnted out by
the Liége-Strasbourg group (GL 79, Mah 79).

The variations in the nuclear matter predictions are generally attributed
to off-shell differences in the potentials (see also the discussion in Section
5.5). This off-shell behaviour of a potential contributes slightly differently in
nuclear matter as compared to free two-nucleon scattering. The reason for
this is the Pauli projector and energy denominator in which the Brueckner
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Figure 9.7: The essential conventional saturation mechanisins in
nuclear matter. Explanations are given in the text.

equation, Eq. (9.16), differs from the corresponding equation for free two-
nucleon scattering, namely the Lippmann-Schwinger equation:

1

T(wg)=V+ Var—T+ie

T(wy) (9.25)
where w; denotes the free (purely kinetic) energy of the two interacting
nucleons (in contrast to w in Eq. (9.16) which includes a single particle
potential I/ due to the nuclear medium). The bulk of the G-matrix {and
analogously for the 7-matrix) is obtained in the approximation

G(w) ~ Vo + Vr Ve (9.26)

w — Hy

where V¢ denotes the central force and V¢ = 13:8;, the tensor force com-
ponent in the nuclear potential applied. If the tensor force is large, the
attractive second order term is large. Note now, that all quantitative nu- -
clear potentials are fit to essentially the same N N data which are related to
the on-shell T-matrix. Therefore, a potential with a weaker Vp (implying a
small second order term in Eq. (9.25)) needs a stronger (attractive) central
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Figure 9.8: 3§, contributions to the nuclear matter energy as a
function of density for three potentials which differ by the strength of
their tensor force (the %-D-state is denoted). The 1S, contribution (dashed
line) is given for comparison. . - o

force to arrive at the same on-shell T-matrix values as a potential with a
stronger tensor force. When we enter now nuclear matier, the Pauli pro-
jector (which is absent in the Lippmann-Schwinger equation) and a larger
- energy denominator (due to the single-particle potential in the many-body
environment) reduces the second order term as compared to the free case.
These two effects are commonly referred to as the Pauli and - dispersion
(disp.) effect (see Fig. 9.7 and Table 9.2). This reduction of the attractive .
second order term increases with density, where the Pauli effect is typically
stronger density dependent than the dispersion effect (see Fig. 9.7). The
larger the second order term (i. e. the larger Vr), the larger the absolute
reduction, '

This explains the outstanding role which the tensor force plays for nu-
clear saturation, and it also explains the differences in the predictions by
potentials which differ in the strength of the tensor force. A simple measure
for the strength of the tensor force is the prediction for the D-state admix-
ture in the deuteron, as the transition from a 36, to a 3D, state can only
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Figure 9.9: Some contributions from single mesons to the nuclear
mntter potentlal energy Potential B is used.

. proceed via a tensor force. Another measure is the wound integral x for
~analogous reasons (see Table 9.1 and 9.3), Therefore, in Fig. 9.5 and 9.6 we
give in some cases the %-D-state of the deuteron as predicted by that same
potential. It is clearly seen that the binding energy predictions follow the
strength of the tensor force, with larger tensor forces implying less binding
energy. Deviations from this rule are essentially due to differences in the fit
of the NN phase shifts; e. g. the fact that potential UNG and potential 4
differ by about 5 MeV in spite of identical deuteron D-state predictions can
be traced to substantial differences in the fit of the P-waves, with potential
A ﬁttmg modern phase shift analyses accurately. As the Potentials 4, B,
and C' have (almost) identical fits, the accurate PD systematic of nuclear

matter results is most reliably seen in Fig. 9.6 by compa.nng curves A, B,
and C.

For the 35; G-matrix element, for which the influence of the tensor force
- is the largest compared lo all other states, we demonstrate this effect for

three potentials differing by their deuteron %-D-state predictions in Fig.
9.8.

Apart from the tensor force there are also other causes for saturation.
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The most trivial one is the Pauli principle giving rise to an average kinetic
energy per nucleon in nuclear matter of 0.3k%/M which increases with den-
sity (see Fig. 9.9). The sum of the P-wave contributions is repulsive (see
Table 9.2) and increases with density. However, this is largely canceled by
the attractive D-wave contributions. Therefore the main contribution to
the binding energy comes from the S-waves including the effect of satu-
ration (due to °S;). Finally, there is the repulsive core which should give
saturation automatically. However, this comes into play only when the
‘averege distance between two nucleons is in the order of the core radius
of about 0.5 fm. This distance is equivalent to about eight times nuclear
matter density. Accordingly, this effect is small at the empirical saturation
density. Essentially, the hard core prevents a collaps at very hxgh densities
(Bet 71).

The role of some single mesons in providing binding energy and satu-
~ ration is demonstrated in Fig. 9.9. The total potential energy (tot. pot.),
* the average kinetic energy (kinetic), and the total energy (total} per nu-
cleon are also shown. All meson-exchanges considered are iterated in the
- Brueckner equation. The m-curve plus kinetic energy saturates, whereas
this is not true for w + ¢. Again, the tensor force provided by the p]on is

. the reason for this difference. :

In summary, we have seen — in particular from Fig. 9.7 — that conven-
tional many-body theory provides powerful saturation mechanisms. How-
ever, we have also seen (from Fig. 9.5) that this conventional saturation’
is insufficient to completely and accurately explain the empirical nuclear -
saturation. In fact, the standard problem of the conventionally treated nu-
clear many-body system is: if the binding energy of the system is about
correct, the saturation density is too large, — and if the density is correct,
the system is underbound. :

When it was realized that there was a fundamental problem in obtaining
a good fit to the ground state properties of nuclear matter and finite nuclei
in a parameter-free approach, several suggestions were made to either over-
come or simply elude the problem. Density-dependent effective forces was
one of these suggestions, which revived an old idea advanced by Skyrme in
the 1650’ (Sky 59). In this approach one introduces a phenomenological
density dependence into the two-body force in the medium. This was done
either ad hoc (Skyrme forces, see e. g. Bar+ 82) or orientated towards a
Brueckner G-matrix originally obtained from a free potential (Neg 70, CS
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72, FN 73, MEH 74, MMF 75, MHN 75). These interactions were then ad-
justed to reproduce the empirical saturation properties of nuclear matter
by introducing some suitable parameters. However, these effective forces:
and their adjustable parameters takes us away from the goal of calculating
nuclear properties in a parameter-free theoretical sceme. We feel that a
fundamental understanding of nuclear structure is only achieved when we
are able to explain the properties of nuclear many-body systems in terms
of the fundamental N N interaction as we know it from studies of free space
NN scattering (Sections 4 and 5). In the following section we will further
pursue this goal. ' o : -



150 ' SECTION 9. N UCLEAR MATTER I

Table 9.2: Partial wave contributions to the energy per nucleon in
nuclear matter (in MeV) with and without conventional satura-
-tion effects. C

| No  No
State - With Pauli and dispersion Pauli
- dispersion effects effect effect
IS0 -16.51 -17.51 -18.02
Py —3.53 -3.64 ~3.59 -
P 4.55 4.29 4.35
3P . 10.27 9.69 9.91
35, -18.89 -25.52 -23.40
D 1.50 - 1.47 1.20
D, -2.36 -2.38 ~-2.37
D, . -3.90 -4.03 —4.01
P, -7.14 -T1.86 -7.42
3Fy ~0.55 -0.55 -0.56
1Fy 0.84 0.83 0.83
i/ 3 1.54 1.53 ' 1.53
3Dy 0.27 0.13 0.23
G, 0.21 - 0.20 0.20
J>4 -1.08 —1.10 - -1.09
"Total
potential energy -34.78 ~-44.44 —42.22
Kinetic energy : 22.67 22,67 22.67
Total energy ~12.11 ~21.77 -19.54

For Potential B at kr = 1.35 fm~?! in the two-hole line
approximation using the standard choice for the single particle
potential. (This is also used in Fig. 9.7.)
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Table 9.3: Contributions to the wound integral in nuclear matter
(in %) for three different potentials (defined in Table A.1)

A B C

ls; 1.0 (1.2) 1.0(1.2) 1.0(1.3)
39, 0.5 (1.5) 0.6(1.3) 0.8(1.4)

%, -°D; 2.2(4.9) 3.3(6.5) 4.7 (8.4)

| Total 5.4 (IL1) 66 (12.5) 8.1 (144)

At kp = 1.35 Im~* using the standard
(the continuous) choice for the single.
particle potential. '



Section 10

Nuclear Matter IT — Beyond
Convention -

Profound skepticism is favorahle to conventions,
because it doubis that the criticism of conventions
is any truer than they are.

~— G. SANTAYANA,

- On My Friendly Critics

The results of the previous section have shown that the conventional model
for thie nucleus is probably insufficient to quantitatively describe the nuclear
ground state. Therefore, it seems necessary to go beyond the conventional
scheme. This is the task we will try to undertake in this section — after
giving first an overview (Subsection 10.1} of possible extensions proposed
in the literature, ' - '

10,1 Possible Extensions

- We have seen that it is not really possible to explain the saturation proper-
‘ties of nuclear matter quantitatively in the framework of the conventional
- model, i. e. assuming a non-relativistic Hamiltonian with a two-hady po-
tential obtained from the study of NN scattering in free space. To predict
simultaneously the correct saturation deusity and hinding €lleTgy 5eems an
impossible task. The fatal trend is that the saturation density is always
substantially too high for reasonahle energies. As nuclear matter — an in-
finitely extended nucleus without Coulomb interactions — does not exist in

152
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reality, one may think of attributing the failure to the hypothetical nature
of the system as such. Calculations in finite nuclei, however, have shown
that in those realistic systems the exactly analogous problems appear: ei-
ther the predicted radius is reasonable, but the binding energy substantially
underestimated, or vice versa (the second case corresponding to an overes-
timated saturatlon density); see (KLZ 78) and Section 11. The conclusion
that the conventional model might be - in part — insufficient is suggested
by these facts. Realizing the outstanding simplicity of the conventional
model, it seems obvious to suspect that it is just too “narrow” — or with
other words, that suppressed degrees of freedom may play a non-negligible
role. So, the time has come to think about appropriate and reasonable
extensions of the underlying assumptions.

To get some structure into the upcoming considerations, we list in Table
10.1 four items relevant to the nuclear many-body problem. The assunip-
tions made in the conventional approach are given in column two. Column
three states some obvious ideas leading beyond convention. Of course, there
is no claim of completeness concerning that table. Also, the distinction be-
tween the various points is not clear-cut, since the extension of one item
often has consequences for others. We will discuss now some of the points.

In recent years the relevance of the quark-structure of hadrons for nu-
clear physics has become a major issue. Attempts have been made to take
the composite structure of nucleons explicitly inlo account in the nucleus.
In some work this is done hy considering six-quark bags for the short range
part of the NN interaction (HKM 83, CM 87). In other studies the nucle-
ons dissolve completely in the nucleus — instead of an A-nucleon nucleus
a confined 3A-quark system is considered (FM 77, Pet 84); however, there
are problems in getting a bound nucleus in this way. In a less radical ap-
proach, nucleons dissolve only partly (Gol+ 87). Some of these moderate
considerations yield remarkable effects (CM 87, Gol+ 87). However, due
to the complexity of the calculations and the approximations involved, the
- results presently available are by no means of a final nature. Certainly
more work has 1o be done and will he done in the near future.

More systematic investigations have been pursued in the traditional
framework of hadronic physics. In Sections 4-7 we have seen how well
the nuclear force can be understood in terms of meson-exchanges. Never-
theless the usual procedure in nuclear physics is to “freeze” these mesons
out as soon as they have finished their job of creating the nuclear force.
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Table 10.1: Basic assuinptions underlying the nuclear many-body
problem ' '

Item ' ~ Stmplest assumption Posstble extension(s)
Mesons,
Degrees of freedom  Nucleons only Isobars,

Quarks and gluons

Hadron structure Point structure (Quark) sub-structure

Interaction{s) (Static, instantaneous) Non-static interactions,
: two-body potential " Many-body forces

Dynamical equation Non-relativistic Relativistic

Schrodinger equation . Dirac equation

Obviously, this is inconsisteunt. Therefore, in a first step beyond conven-
tion one should consider meson degrees of freedom explicitly.in the nuclear
many-body system. This point gets strong support from studies of electron
scattering in which the role of these additional degrees of freedom in the
nucleus have been clearly established. The jntrinsic magnetic moments of
proton and neutron differ substantially from the Dirac value for structure-
less particles. As discussed in Section 4.2, the emission and absorption of
vector mesons hy an isolated nucleon makes the major contribution to the
anomalous magnetic moment. In the many-nucleon system, the exchange
of charged mesons between nucleons gives rise to additional contributions
to the nuclear electromagnetic current. One of the significant achievements
of nuclear physics in the past 20 years has been the unambigous isolation
antd identification of these exchange-current contributions to the electro-
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Figure 10.1: Two-meson exchange diagram invelving one A isobar.
The double slash on the intermediate nucleon line indicates the change of
that propegator in the medium.

magnetic properties — in particular, of light nuclei (RW. 79, SHS 83, HGB
83, LG 86, FP 87).

Furthermore, we have seen in Section 5 and 7 that the excited states
of the nucleon play an impoftant role in a genuine and realistic meson-
exchange model for the nuclear force. The lowest-lying pion-nucleon res-
onance, the A(1232) isobar, is essential for NN scattering at low and in-
termediate energies. It provides a large part of the intermediate range
attraction and of the inelasticity above pion-production threshold. Aguin,
being aware of how crucial this degree of freedom is for the two-body in-
teraction, we should not “freeze it out” in the many-body problem. The A
degree of freedom leads to serious consequences in the nuclear many-body
“system. Due to the presence of the medium, the propagation of the A and
the nucleon is altered in nuclear matter, Fig. 10.1. This gives rise to Pauli
and dispersion effects in addition to those predicted by ordinary Brueckner
theory with static forces. These effects are both repulsive and contribute
to saturation. Following a suggestion by G. E. Brown, the influence of the
A on nuclear saturation was first studied by Green and Schucan (GS 72)
in perturbation theory. More consistent and systematic studies of these
effects were done in the course of the 1970’s by several groups (GH 74, GN
75, DC 76, HM 77). This early work has been reviewed by A. M. Green
(Gre 79). As mentioned, the items in Table 10.1 are not all independent
— the A degree of freedom can also he understood as taking, to a cerlain
extend, the quark structure of the baryon into account, by considering a
quark-spin flip. .

The idea of nuclear many-body forces is almost as old as the meson hy-
pothesis for the two-nucleon force (PH 39, Ros 48). This is not surprising:
If mesons mecdliate the force between two nucleons, then, in a many-nucleon
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(a)

(b) - (c)

Fxgure 10.2: Three-nucleon diagrams, (a) is a three-nucleon corre- -
lation, (b) and (L) are three-nucleon force contrlbutmns

environment, they must give rise to many-body force contributions in vari-
ous ways (see e. g. Fig. 10.2b and ¢). Nevertheless only in recent years the

- concept of many-body forces has drawn substantial interest, since it has be-

comne apparent that two-body forces, used in a non-relativistic framework,
do not quantitatively describe the properties of nuclei (Section 9). This
failure is frequently lntelpreted as an indication for the need of many-body
forces.

Generally speaking, a n-body force is an irreducible function of the co-
ordinates or momenta of n particles, e. g. an irreducible Feynman diagram
which cannot be generated by merely iterating two-body interactions. To
give some examples: the diagram depicted in Fig. 10.2a does not represent
a three-nucleon force contribution; this diagram can be generated by sim-
ply iterating two-nucleon interactions; it is a three-nucleon correlation. In

“contrast, the diagrams b and c of Fig. 10.2 represent three-nucleon forces.

When discussing three- or many-hody forces, caution is in place: the
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{b) ()

Figure 10.3: Various three-nucleon force diagrams. Full lines (nucle-
ons) are upward directed if not noted otherwise. '

distinction between many-body forces and many-body correlations is nei-
ther unique nor fundamental. It depends on the model space applied or, in
other words, on the degrees of freedom treated explicitly, For example, the
diagram Fig. 10.3a is a genuine three-hody force in a model gpace which
consists of nucleon states only. In an extended Hilbert space which includes
A isobar states, Fig. 10.3a represents just a three-particle correlation. A
similar consideration applies to diagram b of Fig. 10.3: In a genuin rela-
tivistic theory {three-body Bethe-Salpeter equation) this diagram does not
represent a three-body force. Thus, most many-body forces are artificially
created by freezing out degrees of freedom. In this respect they are merely
artefacts of the particular theoretical framework applied. Because of ihis
model dependence of the terminology, it is useful to introduce an operat-
ing definition for n-nucleon forces which we will take to be the following:
forces that depend in an irreducible way on the coordinates or momenta
of n nucleons when only nucleon degrees of freedom are taken into account
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-

Figure 10.4: 27r-exchange three-nucleon force. The shaded oval rep-

- - resents the # N amplitude with the forward propagating Born term sub-

tracted.

(FGP 84).

‘The classical example of a three-body force is the electromagnetic force
of Primakofl’ and Holstein {PH 39). It arises from the creation of particle-
antiparticle pairs (similar to Fig. 10.3b) which in & non-relativistic Schroe-
dinger equation is represented by a three-hody potential term. Applying
the meson theory of the nuclear force, which — at that time — had just
been suggested by Yukawa in analogy to ihe eleciromagnetic interaction,
Primakoff and Holstein proposed the first three-nucleon force in that same .

" paper.

The three-body force which received a lot of attention during the pasi
20 years is the two-pion exchange diagram shown in Fig. 10.4. The essential
ingredient is apparently the 7N scatiering amplitude. The crucial question
is how to mndel this amplitude in the energy region of interest for the
- three-body diagram. There are essentially two approaches in the literature.
One method uses the observed on-mass-shell properties as physical input
and extrapolates the amplitude off-mass-shell by using ¢urrent algebra and
PCAC (BGG 68, CSB 75, MR 79, Coo+ 79, CG 81). Alternatively one can
develop a field-theoretic model. Some of the important diagrams of such a
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model are displayed in Fig. 10.3;! additional diagrams are b and ¢ of Fig.
10.2. These diagrams are to be viewed in analogy to those building up the
7N amplitude in a field-theoretic model for 7N scattering (Section 8.1). It

is perhaps instructive to note that the same dichotomy exists for the 2m-
exchange contribution to the N N potential (Section 5.1). The Stony Brook

(JRV 75, BJ 76) and Paris (Vin 79, Lac+ 80) group adopted the dispersion

theoretic approach in which as much 7N and mr data are used as possible,

together with theoretical constrains on the #N amplitude. Alternatively,

the Bonn group built a field-theoretic model for the NV interaction which

takes isobars explicitly into account (see MHE 87 and Section 5).

There has been a great deal of discussion concerning which of the two
approaches is to be preferred. Each has advantages and disadvantages.
Whereas the former (Fig. 10.4) suggests completeness of the amplitude,
it cannot take into account the medium effects on this diagram and on
the corresponding two-body force diagrams. Furthermore, the uncertainty
of what to choose for the NN cutoff parameter in Fig. 10.4 can affect
the size of the resulting contribution to the energy per nucleon by a fac-
tor 2 to 3. On the other hand, the present field-theoretic models take
only the diagram Fig. 10.3a into account which depicts an intermediate A
isobar. However, in this case there is no uncertainty with regard to the
parameters, as they are taken from the corresponding NN model which is
constrained by the NN data. Moreover, it has been shown that the contri-
bution from this three-body diagram (Fig. 10.3a) and the medium effects
on the corresponding two-body diagram (Fig. 10.1) cancel to a large extent
{see Subsection 10.3 and 10.4). Therefore, the consistent and simultaneous
treatment of corresponding two- and three-body force contributions, which
is the more fundamental approach and which the field-theoretic model al-
lows for, results in a net contribution that is small compared to just one
isolated three-body force contribution. Furthermore, it is crucial for the
~ diagrams of Figs. 10.4 and 10.3a to include also the exchange of a p me-
son (ECM 85); this is particularly straightforward in the field-theoretic
approach (DFM 82, Miit 84).

The three-body force diagrams discussed so far, are only a small sub-
 set of all possibilities. For others that have been recently discussed in the
literature, we refer the interested reader to the work of Keister and Wiringa

'A diagram of the type Fig. 10.3a was first considered by Fujita and Miyazawa in 1957
(FM 57). ' - ' ‘
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(KW 86) and the Stony Brook group (BB 75, Nym 79, JRK 83, Ain+ 87).
These latter studies are also closely related to relativistic effects in the
nuclear many-body problem which we will discuss in Subsection 10.5.

This brief survey of some possible extensions of the conventional model
may have given us some idea of the complexity of the problem. It is par-
ticularly important to stress that the various contributions and effects are
not all independent from each other. To avoid double counting or a dis-
torted representation of just one of the effects, it is essential to proceed
consistently and carefully. '

10.2 Meson Degrees of Freedom

Ever since the meson hypothesis was formulated, it was (at least in princi-
pal) clear that the full nuclear many-body problem should include nucleons
and mesons. Nevertheless, traditionally only nucleons have been consid-
" eved, these interacting via a static two-body potential. Even in cases where
the two-nucleon force was derived from meson theory, the mesons were
usually “forgotten” as soon as the nuclear force was constructed. “Meson
theory” was merely used to provide a suitable ansatz for the two-body po-
tential with a convenient parametrization in terms of mass and coupling
parameters. Thus, the dynamical presence of the mésons was ignored. Ob-
viously, from a more fundamental point of view, this is.not satisfactory.
Apart from some early studies of which we mention the work by Schiff
- (Sch 51) and by Duerr (Due 56), historically, the possible role of mesons in
the nuclear many-body problem was considered more seriously by n larger
part of the nuclear physics community when two empirical events/develop-
ments apparently called for it. The discovery of pulsars (neutron stars)
in the late 1960’s suggested the existence of neutron matter with a high
density — about ten times the one of saturated nuclear matter. At about
that same time, progress in the heavy ion physics experimental program
stimulated speculations over higher density nuclear matter giving rise to
new phenomena like pion condensation. It is questionable wether in these
systems of high density — implying higher average momenta — the princi-
pal assumplions the usual approach is based upon are still valid.. However,
even for nuclear matter at normal densities it is legitimate to ask whether
mesonic degrees of freedom could cause subile, but remarkable effects; af-
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ter all, the “failure” of conventional many-body theory consists only in a
rather small deviation from the empirical properties. _

Motivated by these and similar thoughts, during the past two decades,

several groups have attempted to develop a many-body theory for nucleons
and mesons. We mentione here the work by Dover and Lemmer (DL 68,
‘DL 69), Brown, Puff and Wilets (BPW 70, Wil 79), Bolsterli (Bol 71),
Danos and Gillet (Dan T1, DG 79), Walecka and Chin (Wal 74, Chi 77),
and Schiitte (Sch 74). As 1t is beyond the scope of this article to d]scuss all
these comprehensive studies, we refer the interest reader to the excellent
review literature cited. Substantial applied work has been done in the
framework suggested by Schiitte providing a rich choice of quantitative
results. Therefore we will discuss his ideas in more detail. _

The approach by Schiitte (Sch 74) is field-theoretic in nature, thus treat-
~ ing baryons and mesons e priori on an equal footing. However, a principal
problem of every field-theoretic many-body theory is how to take into ac-
count the effects of the many-body euvironment on the particles and their
interactions (e. g. the single-particle energies in the medium, propagation
in the medium, etc.). This is difficult to do in a covariant way. There-
fore, Schiitte suggested to use time-ordered (“old-fashioned”) perturbation
theory , which is similar to the usual perturbation theory of ordinary quan- -
tum mechanics. Thus, methods familiar from non-relativistic many-body
theories can be applied.

Now, we will outline the principals for a many-body theory in which the
Hilbert space consists of baryon and meson states (for more details see MHE
87, Appendices A-C). The starting point is a field-theoretic Hamiltonian
for mesons and baryons wluch is represented in the la.nguage of second
qua.ntlzatmn

Ch=t+w (10)

where ‘
t = ¢(B) g ylm - ' (10.2)

See e. g. the field theory text by Schweber (Sch 81), Chapters 11 and 13.

30ur notation deviates here substantially from the usual, in which one would write
H = H, + H instead of Eq. (10.1). However, to avoid confusion with the notation
introduced in Section 9 for the non-relativistic theory, we wxl] use a small letter for the
field-theoretic Hamiltonian.
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Figure 10.5: Meson-nucleon-nucleon (a), and meson-nucleon-isobar.
(b) vertices. Single lines denote nucleons, double lines isobars, and dashed
lines mesons. ' : ' '

represenis the free, unperturbed Hatiltonian for baryons

B M 8 =N Egbhb, - (10.3)
: . 8.

and mesons

- glm) oyl + (?) +...= Zwaa!xau. ' 7 (10.4)

- The b/ ,bp and a!,a, are the creation, annihilation operators for haryons
(fermions) and mesons (bosons) satisfying the usual commutation rela-
- tions. The summation index J stands for all baryons (nucleons, isobars
etc.) taken into account and &ll the quantum numbers characterizing their
states (e. g. spin, isospin, momentum, parity). The index o has the corre-
sponding meaning for mesons. Eg and w, are the relativistic free energies
for baryons and mesons, respectively. The interaction part of the Hamil-
tonian is denoted by 13", Il describes the interaction between mesons and
-baryous '

W= WWND Ly (V) VA > Wagablibgaath.c. (10.5)
B8'a ,
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4 =t

Figure 10.6: One-hoson-exchange diagrams in time-ordered pertur-
bation theory. The horizontal, dash-dot lines indicate the states involved
in the meson propagators which — in a many-body environment — are
affected by the medium. ) ‘ '

with h.c. standing for the liermitian conjugate. These interactions are dis-
played graphically in Fig. 10.5. They are related to the interaction Lan-
‘grangians L (see Appendix A and B for a summary) in the usual way:

| aL;
IV(IJ :_'—v/‘dazr[[:f a [u)(P(.u))]Eu-—D (10'6)
: Plu)
where tp{ is a meson field and the dot stands for the time derivative (see

| MHE 87 for more explicit expressions).

Applying time-ordered perturbation, the lowest order contribution to

_ ~ the two-nucleon system caused by the Humiltonian £q. (10.1) is of second
: order ‘

ey =¥ __1_ 7 "
¥ (,.)—H_"z_i_i_iel’l g (10.7)
(z denotes the relativistic free energy of the two interacting nucleons in
the c.m. frame, see Eq. (10.26) below). This corresponds to the diagrams
shown in Fig. 10.6, and can be understood as an one-boson-exchange “quasi-
potential”. The OBE diagrams up to infinite orders, the so-called ladder
diagrams, can be summed up most convenienily by an equation of the
Lippmann-Schwinger type which employes this quasi-potential

1

T(z)=V(z)+ V(= )Tt—-{———;

T(z) (10.8)
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where T denotes the T-matrix, which is related to the S-matrix by .

(B1851518:85) = (Bi31:52) — 2mib(Egy + Egy — g, — B,)(BL55\T1BuB)
‘ (10.9)
‘with the states defined as in Eq. (10.22) below.

- These are the basic ingredients for the scattering of two free nucleons,
in a simple model which does not include other baryons and takes into
account only iterative OBE diagrams. More elaborate models and the role
of other baryons will be discussed in Section 10.3.

Let us now go back to the nuclear many-body problem. It is our concern
to proceed consistently in the field-theoretic framework for mesons and
baryons, which we have just set up and applied to free NN scattering. To
take the many-body environment adequately into account, we rewrite our
Hamiltonian Eq. (10.1), in analogy to Eq. (9.13), as follows:

h=ho+hy S (10.10)

~with the unperturbed Hamiltonian

ho=t+ U " (10.11)
and : : . '
_ Chy=W-U - (10.12)
the perturbation. More explicitly we have B _ -

ho= BB 4 RN O (1013)

where . .

hy ' =118 4 U = 3 el | (10.14) -

5 |

is the unperturbed Hamiltonian for baryons and
hgm) = #lm} 4 rtm) — Z{,}q G»I,Gu (10.15)
the corresponding one for mesons. Here, we will assume U™ = 0,i. e.

AY™ = ttm) and @, = Waj other choices have been considered in (MH 85).
The single baryon potential in the nuclear medium is

UB =3 10k, (10.16)
i
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implying : ' '
] ’ . €3 = Eﬁ + Ub. ' (10.17)
The explicit choice for this single particle potential is given below.
“A second order term in the perturbation is o
e -y
V(z)=W-

Z—ho

W ©(10.18)

which describes a one-meson-exchange in the nuclear medium; it is to be
compared with the free exchange Eq. (10.7) (see also Fig. 10.6)). In analogy
to conventional Brueckner theory (Sect. 9.3), we have the following Bethe-
Goldstone equation in the medium . ‘ :

G(z)=V(z)+ F(E)E E?;,D@(E) (10.19)

with @ the usual Pauli operator which projects onto unoccupied two-
nucleon states. In lowest order, the energy is given by

toiy Eﬁ+2 < T <ﬂ1p2|c‘:(z)|ﬂ1ﬂz-ﬂzﬂ1);n4 (10.20)

H ﬁ""k ﬁl:ﬁnskfr
with |
| Z=eg + ey, - (10.21)
M’ the mass of the physu:al nucleon and | R
|/31ﬂ2) = bl?,bi 0y A -(10.22) |

where |0) denotes the vacuum.
Again, in analogy to conventional Brueckner theory, we use for the single
particle poteutla.l the deﬁmtlon

Us=Re Y (38'|Ges + ¢)|BB' — B'B)- (10.23)
_ : B'<kp '

Applying this definition for nucleon states below aud above the Fermi sur-
face is denoted by the continuous choice. Alternatively, Eq. {10.23) may be
employed for states below the Fermi surface only, using a vanishing poten-
tial above; this choice is equivalent to the stendard choice. To a good ap-
proximation, the single particle energy at one density can be pa.ra.metrlzed
in terms of two constants M and Uy, by using the ansatz

e5 = Eg+ Up = (M? +p3)f — M + M + Up (10.24)
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with qg the particle 3-momentum.

- Equations (10.18) to (10.24) represent the calculatlonal scheme for the
energ_v in nuclear matter in lowest order in G' when the dynamical presence
of mesons is taken into account. How does this compare with the usual
- scheme which applies static two-hody forces (Section 9)? The main differ-
ence is that in the approach just presented, the meson propagators change
in a characteristic way-in the many-body environment as compared to free
two-nucleon scattering. This can be clearly seen by comparing Eq. (10.7)
with Eq. (10.18): the free propegator [z — t]7! is replaced by [Z — hq]~! in
the medinm. We can evaluate the size of this effect on the energy in nuclear
matter by defining the following G-matrix

G(5) = V(z) + V(2)—2—(z) (10.25)

with

= Eﬁl + Eﬂz (10.26)
-and % as defined before in Eq. (10.21), and replacing @ in Eq. (10.20) by
G. The difference in these two types of calculations gives an ider of the
effect of the medium on meson propagation,

Results for the two types of calculations are shown in Flg 10.7. 4 It is
seen that the medium affects the meson propagators such that the bind-
ing energy is slightly reduced (about 2 MeV at nuclear matter density).
This quenching of the attraction can be understood by comparing the con-
tributions to the energy from second order in the quasi-potential. (Note
that the Born term in the ‘Brueckuer equation’ (10.19) is not altered in the

“medium.) We will consider the relevant propagators only, ignoring vertices:
Without the medium effects we have
2

1 i .
o aioky | o — Egy — w /(2 —eg —€ar). (10.27)
I 2 1 o
With medium effects i_.his changes to
. _ 1 2
o — ey —w| [T ) 10.
a;.g:zkp €3, — €3} — Wa /(Z ~ e — egy) ( 0.28)

"1OBEPT defined in (MHE 87, Appendix B, Table 8) is applied using the standard
choice for the single-particle potential.
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Figure 10.7: Mesonic effects in nuclear matter for the case of an
one-boson-exchange potential. The full curve includes the medium
eflects on meson propagation, whereas in the dashed curve these effects are
suppressed. - ' ' ' I

Due to the single particle potential, the energy-denominator in the medium,
A€ = |eg, — €g1 — wal, is larger than in the vacuum, AE = |E, Eg —wq|.
This reduces the {attractive) second order contribution in the many-body
environment (Kot+ 75, KMS 76). This effect is analogous to the dispersion
eflect in ordinary Brueckner theory (Sect. 9.4); it is, however, much sinaller.
Relatively speaking, it is largest for the 3§, contribution, as it affects the
pion propagator the most (since of all mesons, the pion has t'h_e smallest
mass), which in turn weakens the tensor force. The density-dependence
of this mesonic effect is such that the saturation point moves along the
Coester band and not off it (Fig. 10.7). ' ' S

10.3 Isobar Degrees of Freedom

In the previous subsection we established the basic formalism for taking
into account degrees of freedom other than the nucleon. As a first example
we chose the simple OBE model and considered meson degrees of freedom
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explicilly. We saw how the nuclear force can be influenced when inserted
_ into a nucléear many-body surrounding: the meson propagator is altered.
The quantitative effect we found in the simple case of OBEP was quite
moderate. However, this cannot be the full story. The most important
feature of the nuclear force for the nuclear groundstate properties is its
intermediale range altraction. Within the OBE model this is described
by a ¢ boson with a mass of about 500-700- MeV. We know that this
particle does not exist in nature. It is merely introduced as a convenient
parametrization for the rather complex processes involved in the exchange
of two pions. _
However, here we are concerned with subtleties like the role of subnucle-
~ onic degrees of freedom in the many-body problem. For such distinguished
effects a model of appropriate sophistication is needed, otherwise there
~would be no credibility to the results. Therefore, we will now include ex-
plicit two-meson-exchanges in our consideration and avoid fictitious bosons.
In Section 5 we discussed a model for the NN interaction which contains
all relevant two-meson-exchange diagrams. These diagrams (of the kernel)
can be classified according to the baryons which occur in the intermedi--
ate states; namely, either nucleons only, or one nucleon and one isobar,
or isobars only. For the case of two nucleons in intermediate states, the
* two-meson-exchange diagrams have to be irreducible (i. e. of the stretched
or crossed box type); otherwise there would be double counting, as the
reducible (iterative) diagrams are generated by the Lippmann-Schwinger,
respectively Brueckner equation. As shown in Section 5, the stretched and
crossed box diagrams with NN intermediate states are in general not large;
furthermore, there are characteristic cancelations between these diagrams.
Consequently the net contribution is rather small and so are the medium
effects coming from these diagrams.

More important are the diagrams which involve isobars. They con-
tribute substantially to the nuclear force, particularly in the intermediate
range. Accordingly, their medium effects may turn out to be large. There-
fore, we shall present in more detail the structure of diagrams involving
* isobars. This will clearly reveal the various ways in which the contribution
from these diagrams may be modified in the nuclear medium.

The lowest order in which isobars can contribute to the NN interaction
is the fourth order in the interaction Hamiltonian W (which corresponds
to a two-meson exchange). The general structure of the fourth order per-
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Figure 10.8: Two-meson exchange diagram with one intermediate
A state. The horizontal, dash-dot lines indicate the siates involved in the
propagators which — in nuclear matier — are affected by the many-body

' 1?1edit1111. '

turbation is for the case of free scattering

1 1
Vi) =W — W — I ! —W (10.29)
z—t+4+1ie z—1+1e z—1f+1¢

with W as given in Eq. (10.5). The irreducible part of these diagrams
contributes to the “kernel” V(z) of the scattering equation (10.8). When
inserted into the mauy-body problem the contribution V4)(z) is altered in
a characteristic way; namely it is replaced by :

9 14 @ W

—he Z—hy

Pz = w9 w (10.30)

Z—hn

by

where the Pauli operator @ projects nucleons onto unoccupied nucleon
states.

One can distiguish between two ways in which the medium exercises
influence: '

¢ The Pauli projector @ cuts out the lower part of the nucleon specirum
in intermediate states; this leads to the so-called Peuli effect.

o The propagator [z—1+4i€¢]™" is replaced by [£—ho)~!; the effect caused
by this replacement has become known as dispersion (disp.) effect.
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Figure 10.9: Time-ordered diagrams with NA interinediate states. -

Both eflects reduce the absolute size of the diagram. Thus, for an attractive
diagram there is a net repulsive effect, and vice versa.

The dispersion effect occurs in both the meson and the baryon propaga-
tors. This is demonstrated graphically for the case of one NA box diagram
in Fig. 10.8. In Fig. 10.9 we show all diagrams (i. e. all time orderings)

“which exist for ihe case of NA intermediate states. There are also the
corresponding diagrams with AA intermediate states and the non-iterative
ones (corresponding to diagram 5-12 of Fig. 10.9) with two intermediate
nucleons. We will take into account all these diagrams invelving # and p -
exchange and the medium eflects caused by them in nuclear matter.

In Figure 10.10 we present results employing the field-theoretic model
just sketched.® As expectéd, the medium eflects are substantially larger
than for the simple OBE model. The essential reason for this is the quencl-
ing of the intermediate range attraction as mediated by the 2m-exchange
involving isobar intermedinte states. Note that also the (repulsive) mp
diagrams are included (for which the medium effect causes a net attrac-

%The model and its parameters are given in (MHE 87, Appendix B, Table 9). It is also
explained in Section 5. In the nuclear matter calculations, the continuous choice for the
single baryon potential is used.
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Figure 10.10: Meson and A-isobar effects in nuclear matter, as ex-
plained in the text. :

tibn). However, since the sum of 27 and mp diagrams is attractive, the
2n-exchange being dominant at intermediate range, the net medium effect
is repulsive. ‘It is clearly seen that dispersion and Pauli effects are about
equally important, the latter typically increases more strongly with den-
sity. The non-iterative diagrams contribute about as much to the medium
effects as the box (iterative) diagrams. This is quite understandable, since
- we saw in Section 5 that iterative and non-iterative diagrams contribute
about equally to the NN interaction. ' '
- The shaded areas in Fig. 10.10 represent the (repulsive) medium effects
from diagrams involving A isobars (the Pauli effect occurs, of course, only
in diagrams with NA intermediate states). The hottom line is obtained
when no medium effects are taken into account. The white area between
the lowest two full lines represents the total medium effect from all diagrams -
(i e. iterative and non-iterative) with only NN intermediate states. The
dashed line is obtained for the medium effect on only the iterative diagrams
with NN intermediate states. '
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The density-dependence of the effects due to A degrees of freedom (par-
ticularly, the Pauli effects) is only slightly stronger than that of conventional
saturation mechanisms, bringing the saturation point not markedly off the
Coester band (DC 76, HM 77, MG 78, HA 78, Ana+ 78, Ana+ 79, Gre 79,
MH 80). '

Further detailed quantitative information is given in Tables 10.2-7, which_
are self—explanatnrv The wound integral in nuclear matter at kr = 1.35
fm~! from NN, NA, and AA intermediate states is knn = 10.2%, kya =
3.2%, and kap = 4.6%, respectively, amounting to a total wound of 18%
(note that the continuous choice for the single Dbaryon potential is used in
all calculations of this subsection). In the given xya and ka4 the contribu-
tions from the crossed box diagrams are included which are about as large
as the ones from the box diagrams. The plobablhty for exciting a nucleon .
to a delta isobar in nuclear matter is P4 = EK.NA + kaan = 6.2%.

10.4 Many-Body Forces

Many-body forces can originate. from various sources. In Section 10.1 we
gave an overview of some possible three-nucleon force contributions. We
also pointed .out that many of these contributions are beset by large un-
certainties. For example, consider the diagram Fig. 10.4 representing the
 presently most popular three- body force, — the contribution from this di--
agram to the energy per particle in nuclear matter or the energy of the
three-nucleon system differs by up to a factor of three depending on which
parameters are used for its evaluation, or the details of the model employed,
or the person who did the calcu]a.tmn This is unsatisfactory. What is ob-
viously needed here, is some kind of physical guidance. Now, what would
be a reasonable guideline? Well, it appears to be quite self-evident that the
two-body and the many-body forces should be consistent with ea.ch other.
Finally all these interactions between nucleons go back to the same effec-
tive meson-baryon interactions as given e. g. by the interaction Hamiltonian
Eq. (10.5). The parameters of these vertices cannot change depending on
whether one, two, or three nucleons happen to be in the neighbourhood
(except we plan to take six- or nine-quark effects into account), In the two-
nucleon case, the experimental data to be described quantitatively by the
meson-exchanges, constrain the coupling constants and vertex form fac--
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Table 10.2: Energy per nucleon in nuclear matter (in MeV) with
effects due to n'leson_ and isobar degrees of freedom.

Effects included at kp (fm~1!) 1.0 1.2 1.4 1.6 1.8
- All Pauli and dispersion effects :
“{including A diagrams) -9.23 -10.70 -11.27 -7.92 4095
- All dispersion effects
(including A diagrams) . -10.26 -12.79 -14.93 -14.51 -12.39
All Pauli and dispersion effects in
~ iHerative and non-iterative diagrams _
- with only VIV intermediate states -12.92 -16.03 -20.67 -23.99 -26.10
Mesonic dispersion effects in iterative
diagrams wilh only NN intermediate states -12.76 -1567 -19.78 -22.26 -21.79
No medium eflects on the NN interaction ¥ -13.48 -17.13 -22.39 -26.45 -27.90

" The (small) Pauli effects in the non-iterative diagrams with only NV intermediate
states are also included.
* This curve saturates at kp = 1.8 fm™*; the result at kr = 2.0 fm~? is —26.29 MeV.

tors almost uniquely (see Seclion 4). With these parameters there is no
uncertainty in the three-body force diagram of Fig. 10.3a.

-+ Our experience with the theory of the two-nucleon interaction may lend
us also some guidance in another aspect of the problem: Which three-body
force contribution may be important and which not? In Section 5 we saw
that diagrams involving the A-isobar in intermediate states give rise to
substantial contributions. We also noticed that diagrams with two inter-
mediate A’s are about as important as those with just one. Furthermore,
the exchange of a p meson as “counterpart” Lo m-exchange for the exci-
tation and de-excitation of a A-isobar is of outstanding significance. A
reasonable three-body force calculation should keep all these experiences
from the NN problem in mind. One can expect that the diagram of Fig.
10.3a will give a large contribution. However, for the reasons just discussed,
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Table 10.3: Partial-wave contributions to the energy per nucleon
in nuclear matter (in MeV) at kr = 1.35 fin~! with effects due to
meson and isobar degrees of freedom.

§

Effects included  All Pauli and

All All effects ~ Mesonic disp. No

dispersion dispersion in NN in iterative medinm

effects effects *  diagrams * NN diagrams © effecis

s, -14,25 -14.98 -16.65 -16.78  ~17.33

P, -3.46 ~3.70 -3.76 ~3.684 -3.87

1p, 3.97 3.96 3.90 4.12 4.13

Ip, 10.17 9.76 9.77 9.37 9.31

38, -20.73 -21.49 -24.36 -22.78  -24.35

3D, T 143 1.38 1.38 1.34 1.34

D, -2.22 -2.37 -2.38 -2.56 -2.56

3D, -4.00 -3.08 -3.97 -3.96 -3.97

3P -5.68 -6.32 -6.80 —7.08 -7.14

3, -0.53 -0.54 -0.54 ~0.56 -0.56

15 0.82 . 0.81 0.81 0,81 0.81

3y 1.52 1.49 1.49 1.47 1.47

- ap, . 0,16 0.10 0.10 .0.09 0.07

A - 0.20 0.20 0.20 0.20 0.20

J>4 -1.04 -1.08 ~1.08 -1.10 -1,10
Total . ‘

potential energy -33.64 ~36.75 -41.81 -41.06  -43.36

Kinetic energy 22.36 22.36 22.36 22.36 22.36

Tolal energy -11.28 ~14.40 -19.45 -18,71  -21.00

O M/M 0.700 0.704 0.676 0.650 0.848

Uy {(MeV) ~75.6 ~81.8 -93.6 -93.9 ~98.6

" including A diagrams,
b

diagrams with only NV intermediate states.
* i. e. mesonic dispersion effects in iterative diagrams with only

NN intermediate states.

i. e. all Pauli and dispersion effects in iterative and non-iterative
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Table 10.4: Parameters for the self-consistent single-particle po-
- tential in nuclear matter including all medium effects.

ke (im™) 10 1.2 14 1.6 18

M/M 0799 0.757 0.689 0.619 0.591

Us (MeV) -520 -66.0 -79.9 -93.6 -104.2

See Eq. (10.24) for definition.

besides m-exchange the p meson should be included and the excitation of
more than just one A should be considered. As we are dealing with strong
short-ranged forces, correlations have to be taken into account.

A calculation which takes all these essential aspects into consideration
has, indeed, been done, namely by Dickhoff, Faessler, and Miither (DFM
82, Miit 84). Diagrams which are the subject of their study are shown
in Fig. 10.11, using now the graphical many-body language appropriate for
this problem (compare Section 9). Speaking in terms of the hole-line expan-
sion, Fig. 10.11 shows the three-hole line contributions of the ring diagram
type — however, now with the inclusion of isobar degrees of freedom. Ac-
cording to the definition of a many-nucleon force given in Section 10.1, the
ring diagrams involving isobars are to be understood as contributions from
many-body forces. The weavy line in the Figure represents a G-matrix
derived from the corresponding transition potential which takes v and p
exchange into account. The results obtained by the Tiibingen group (DFM
82) are shown in Table 10.8 and Fig. 10.12.

The top line in Fig. 10.12 denoted by “(2)”, which is the starting point
of our quantilative considerations in this subsection, repeats the final result
of the previous subsection; it is obtained in lowest order Brueckner theory
(two-hole line approximation) and includes all medium effects as discussed.
Now, to this curve the attractive contributions from the N and A rings
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Table 10.5: Landau parameters at various densities of nuclear mat-
ter with all effects due to meson and isobar degrees of freedom.

kp .
(fm~!) density fo 1s go 9

1.0 04p, -1.38 062 012  0.66
135 pg  -101 041 007  0.70

17 2, -0.51 024 006 0.75

~Based on the nuclear matter G-matrix, the effective

. particle-hole interaction at the Fermi surface '
.is calculated, which, multiplied by the density of
states (krpM)/(h*r?), is parametrized by,
F=f+frnemtgo,ro,+ge, o,7 1,
From an expansion of the parameters in terms of
Legendre polynominals, F, '
we give in the table the coefficient for { = 0.
For more details see (Miit 84, NKS 84).



SECTION 10. NUCLEAR MATTER II

Table 10.6: Landau parameters at kr = 1.35 fm~! with effects due

to meson and isobar degrees of freedom.

fo . | f(; L Yo

All medium effects - -1.01 0.41 0.07 0.70
All dispersion effects -1.14 0.40 0.07 0.71

No medium effects -1.41 0.44 0.08 0.77

| See footnote of Tahle 10.5.

'I‘ahle 10.7: Energy per partxcle, £/4, Fermi momentum, kp, and
kompression modulus, K, at saturation for nuclear matter w1th

eﬁ'ects due to meson and isobar degrees of freedom. -

E/A kF‘ K
.(MeV) (fm~1} (MeY)

All 111e_ciium effects -11.28 1.37 ‘135
All dispersion effects —-15.00 1.48 143

No medium effects 2790  1.80 = 248




178 SECTION 10. NUCLEAR MATTER 1I

Figure 10.11: Ring diagrams of third order in nuclear matter in-
cluding A-isobar excitations. |Reproduced from (Miit 84).]

of third order, displayed graphically in Fig. 10.11, are added to arrive at

the curve labelled “(3)' N A”. In Table 10.8 it is clearly seen that the

contributions from ring diagrams including A excitations are much larger
than those which involve nucleons only. The Tiibingen group went further
and evaluated also the N and A rings of fourth order, see Table 10.8 and
curve “(4} N A" of the Figure. Again, the contributions are much larger
when A are included. ' ' :
Finally, using several approximations, the Tiibingen group summed up
- the N and A rings up to infinite orders in closed form. This result (with
the rings up to fourth order sublracted) is represented by the lowest shaded
area of Fig. 10.12 denoted by “?”. Divergence for higher density appears
to be suggested. However, some caution is in place with regard to this last
result, First, several appro¥imations had o he done to make this calcula-
iion feasibie. Secondly, the calculation implies pioir condensation to occur
at densities where it has experimentally not been observed. Therefore, fur-
ther investigations will be necassary hefore final conclusions can be drawn
concerning rings of very high order,

" The bottom dashed line of Fig. 10.12 is the result from the previous
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Table 10.8: Contributions from third and fourth order ring dia-
~ grams in nuclear matter at various densities. {[From (DFM 82))

ke (im™) 10 . 12 14 16

Third order _
Nucleons only +0.08 -0.60 -0.84 -1.70
A included -0.35 -1.63 -2.85 -5.22

Fourth order o
Nucleons only = -0.60 -0.34 -0.27 -0.34
A included -0.76 -0.89 -1.81 -4.15

Total -1.10 -2.52 -4.66 -9.37

The third order ring with nucleons only
~is shown in Flg 10 118 :

subsection when no medium effects were included. Note that this starting
point of our considerations {of medium effects and many-body forces) and
the final result we here arrwed al (after a lot of up and down in-between)
are very close.

In summary of this and the previous subsection, isobar degrees of free-
dom have essentially two consequences in nuclear matter '

e medium effects on the two-nucleon interaction and
o many-body force contributions.

Both are large effects/contributions — but, of opposite sign. In a consis-
tent treatment of degree(s) of freedom either both effects occur simulta-
neously, or none of them occurs. One of these two effects alone, in isola-
tion, does not exist in reality. Therefore, to take into account only one of
them (for instance, only the three-body force contributions, ignoring the
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Figure 10.12: Contributions from ring diagrams to the energy per
- particle in nuclear matter. The order of the ring diagrams taken into -
- account is given in parenthesis. [From (DFM 82, Miit 84}

- medium effects on the corresponding two-body diagrams) yields a substan-
tially distorted picture. In fact, the almost cancelation between these two
effecis/contributions may be the deeper reason why, ultimately, many-body
~ forces may not play a great role in nuclear physics; it may also be the reason
why the traditional two-body force picture has been (and is) by and large
rather successful.® - o | . '

10.5 Relat.ivistic | Eﬂ‘ects

In the 1970’s a new (relativistic) approach to proton-nucleus scattering was
- developed by Clark and coworkers ((lla+ 73), which has become known as
- Dirac phenomenology. A Dirac equation is solved which contains a strong
(attractive) scalar and (repulsive) vector potential. The most significant

5The cancelation of the two effects discussed here for nuclear matter, has also been
found in corresponding calculations for the three-nucleon system by the Hannover group
(HSS 83), giving support to the conjecture that this might in general be true for the
nuclear ground state, : : : '
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result of this new method is the quantitative fit of spin observables, which
are only poorly described by the Schroedinger equation. -

~ Inspired by these successes in the area of scattering, a relativistic ex-
tension of Brueckner theory has been suggested by Shakin et al. (Ana+
83), frequently called the Dirac-Brueckner approach. In analogy to the new
ideas in scattering, the essential point.is to use the Dn'ac equatlon for the
single-particle motion in nuclear matter :

(F-M - Uilp,s)=0 (10.31)
or in Hamiltenian form

(a-p+ BM + BU)i(p,s) = &i(p, s)

with

U="Us++Uy (10.32)

where Us is an attractive scalar and Uy (the time-like component of) a
repulsive vector field. (Notation as in (BD 64); 8 = 4%, o/ = v%¢!) As
discussed in Section 3.4, in analogy to the creation of the Thomas term by
the Coulomb potential, a vector field inserted into & Dirac equation gener-
ates a spin-orbit force. As such a spin-orbit term is typically proportional
to M~? (see Egs. (A.22, A.25)), the reduction of the nuclear mass by the
scalar ﬁeld leading to the replacement M — M with M defined in Eq.

(10.34) below, causes an enhancement of the spin-orbit force. This is the
- basic reason for the success of this approach in nucleon-nucleus scattering.’

~ The fields, Us and Uy, are in the order of several hundred MeV and _
strongly density dependent (numbers will be given below). In nuclear mat-
ter they can be determined self-consistently. The resulting fields are in close
agreement with those obtained in the Dirac phenomenology of scattenng

~ The solutlon of Eq. (10.31) is

E+M{ 1 |
#(p,s) = P-I: ( a-p )Xa (10.33)
N 2M E M ' B
with :
' M=M+4Us, (10.34)

E, = /M2 4 p?, (10.35)
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and x, a Pauli spinor. Normalization as in Eq. (A.10).

As in conventional Brueckner theory, the basic quantity is a G-matrix,
which satisfies an integral equation. In this relativistic approach, a rela-
tivistic three-dimensional equation is chosen, which is applied to nuclear
matter in strict analogy to free scattering. The Thompson equation, Eq. -
(4.20), is particularly convenient (BM 84, HM 87). For this equation we

 have in nuclear matter

- ) d"k- Mz Q(k,P) - _

G ’1 ;P! ’ ,' G k! ;P,
(a',a;P,2) = V(d',q) +f o )3 E})%E_w”k (k,q z.)
(10.36)

with - |
Z=2Ep,,. | (10.37)
P is one half the c.m. momentumn, and ¢,k and q' are the initial, interme-
diate and final relative momenta of the two particles interacting in nuclear
metter, respectively. We suppress the kg dependence as well as spin (he-
 licity) and isospin indices. For |P 1 q| and [P + k| the angle average is
used. Further treatments of Eq. (10.36) can follow the lines established
from conventional Brueckner theory, as e. g. the use of the angle averaged
Pauli projector etc.. Numerically the equation can be solved by standard
- methodes of momentum space Brueckner calculations (HT 70).

The essential difference to standard Brueckner theory is the use of the
potential V in Eq. (10.36). Indicated by the tilde, this meson-theoretic
potential is evaluated by using the spinors Eq. (10.33) instead of the free
spinors Eq. (A.14) (which are obiained as solutions of Eq. (10.31) for U = 0)
applied in scattering (and conventional Brueckner theory), see Appendix
A.1. Since Us (and M ) are strongly density dependent, so is the potential
V. M decreases with density. The essential effect in nuclear matter is a
suppression of the (attractive) o-exchange; this suppression increases with
density, providing additional saturation. It turns out (see figures below)
that this effect is so strongly density-dependent that the empirical satura-
tion and incompressibility can be reproduced. Furthermore, the prediction -
for the Landau parameter f; is considerably improved without deteriorating
the other parameters (see table below). Note that all conventional satu-
- ration effects discussed in Section 9 (which, as we saw, are quite sizable)
are also contained in this calculations. Thus, the relativistic effect is just
a small, but important correction to the conventional result (Tables and
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figures below will quantify these points.)
The single-particle potential

] i )
U(m) = —.—.—»(m]U|m) = -—.—(TTL‘US + ”[kolm) = —.—Us + UV (1038)
: S E En - T
is the 111any-body self-energy ﬁMch is defined in terms of the G-matrix in
formally the usual way -

Um)= 3 .Mb; (| G(3)lmm — nm) (10.39)

nSkF nm

from which the constants Us and Uy are determined. Note that the ansatz
Eq. (10.32) is an approximation, since the scalar and vector fields are in
principal momentum dependent; however, it has been shown that this mo-
mentum dependence is very weak (HM 87, Mac 86).

 Finally the energy in nuclear matteris obtained in lowest order (Brueckner-
‘Hartree-Fock approximation) by '

2

£ 1 M 1 M =~
A- 4 Z ET(mI'Y : pm"i'Mlm)‘*'ﬁ m'nzs:k’ EmEu (ﬁlﬁlG(z)lmn"‘"‘m)*M
_ : . : (10.40)
In Eqs. (1_0.39»40) we use : . S
' i=E,+E,. | - (10.41)

Note that in Egs. (10.38-40) the states [m) and |n) are represented by
Dirac spinors of the kind Eq. (10.33) and an appropriate isospin wavefunc-
tion, (m| and (n| are the adjoint Dirac spinors i =ity B, = M2+ p2,.
“The first term on the r.h.s. of Eq. (10.40) — the ‘kinetic energy’ — is in
more explicit form : ' '

1 MM + p?
1y MU TP (10.42)
A m<kp E”"
The single p_a.rticle energy is
n = B-(mly - pot Mim) +U(m) (10.43)

m

= E.+Uy. - (10.44)
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(Compare Eq. (10.24).)

In Figs. 10.13-15 and Tables 10.9-12 we show results (BM 88) which
are essentially self-explanatory.” _

The suppression of the ¢ contribution can be understood in simple terms
by considering the covariant one-g-exchange amplitude, Eq. (A.8), for q' =
q.and ; = X}, in which case, due to the covariant normalization of the Dirac
spinors Eq. (A.10), the numerator becomes 1. Since the physical states of
the nucleons in nuclear matter are normalized by ute = 1, the sigma (as

- any other) contribution gets a ‘renormalization’ factor (M/E)? (see second
term on the r.h.s. of Eq. (10.40)) which decreases with decreasing M (i.
e. increasing density). A corresponding consideration for the time-like (0)
component of w-exchange would lead to no changes for that contribution.
However, due to the exchange term there is a small enhancement of the -
repulsion created by the w with density. The repulsive relativistic effect
seen in Table 10.10 for the P-wave contributions is essentially due to o
suppression together with a signature of w spin-orbit force enhancement.
The change of the 'Sy contribution is so small, because of a cancelation
of effects due to o and p. The repulsive effect in %) is essentially due
to a suppression of the twice iterated one-pion exchange for reasons quite
analogous to the sigma suppression. _

It has been shown that when the fictitious o boson is replaced by genuine
2m-exchange, the relativistic effects in nuclear matter are about the same as
those obtained within the OBE model (which is applied in the calculations

 presented here) (MB 85). ‘ ,

From the numbers given in Table 10.9 it is seen that the relativistic
effect on the energy per nucleon, A(E/A),. (i. e. the difference between the
relativistic and non-relativistic calculation), is well fitted by the ansatz

A(E/A)rer = 2 MeV x (p/po)®, (10.45)

~which is suggested by an estimate by Brown et al. (Bro+- 87). 7
_. The representation of nucleons by Dirac spinors with a reduced mass,
M, can be interpreted, as taking virtual nucleon-antinucleon excitations in
the many-body environment (many-body Z-graphs) effectively into account

(Bro+ 87), see Fig. 10.16. This can be made plausible by expanding the

~ "In all cases the Potential B defined in Table A.2 is used, except for Fig. 10,13 in which
all three potential of Table A.2 are applied.
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spinor Eq. (10.33) in terms of (a complete set of) spinor solutions of the
free Dirac equation which will necessarily also include solutions representing
negative energy (antiparticle) states (Ana+ 83).

There exists a comprehensive literature on this matter to which we
refer the interested reader for alternative presentations of this and related
subjects (CS 86a, SW 86, HS 87, HM 87).

In summary, the only effect, we presently know of, that is able to account
quantitatively for the remaining descrepancy between the empirical nuclear
saturation and the predictions from conventional many-body theory, is the
relativistic effect as obtained in the Dirac-Brueckner approach. However,
this approach in its current form does not represent a theory. Consequently,
several critical questions can be raised (Neg 85, CJ 86a, Thi 86, Bro+
87); for an informative summary of the present discussion see the recent

_ review by Wallace (Wal 87). Future investigations should devote to the
guestion if a relativistic many-body theory can be formulated which the
Dirac-Brueckner approach would be a consequence of (for instance, in a
certain, well-defined approximation). First attempts into this dlrect:on
have been undertaken by Schiitte (Sch 83)
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Fig.ure 10.13: The repulsive relativistic effect in nuclear matter as
obtained in a Dirac-Brueckner-Hartree-Fock calculation. Conven-
tional saturation points are displayed in the background.
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0 — ; . ,
Nuclear Matter

relativistic

Figure 10.14: Results from calculations with a family of relativistic
potentials revealing a new Coester band which meets the empiri-
cal area; full lines: relativistic, dashed lines: non-relativistic calculations.
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Figure 10.15: Dirac-Brueckner results for nuclear matter (éolid
line) at higher densities. The shaded area represents empirical infor-
~ mation as deduced from pion production in heavy ion collisions (Sto+ 82,

Har+ 85). '
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@ (b)

Figure 10.16: (a) Single particle propagation in nuclear matter with
(b) relativistic corrections; (c) is the relativistic correction to the
energy (cf. Fig. 9.2). Virtual antinucleon states {holes in the Dirac sea)
are denoted by “(-)”, while otherwise the usual many-body graph language
is applied (Section 9.3). '
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Table 10.9: Results of a relativistic Dirac-Brueckner calculation in
‘comparison to the corresponding non-relativistic one,

relativistic non-relativisiic
kg EfA MM Us Uy ’® E/fA MM Uy "
(Bn=1)  (MeV) (MeV)  (MeV) (%) (MeV) (MeV) (%)
0.8 -7.02 0866 -136.2  104.0 23.1 -7.40 0.876  -33.0 26.5
0.9 -B.58 0814 -1742 1341 188 -8.02 0.838 -41.0 21.6
1.0 -10,08 0,774 -212.2 1642 16.1 -10.49 0797 -49.0 185
1.1 -11.18 0.732 -251.3 1956 12.7 -11.69 0.780 -58.1 14.2
1.2 -12.36 g.691 -290.4 2258 11.9 -13.21 0.725 -038.5 12.9
1.3 ~13.36 0.848 -332.7 268.3 126 ~14,91 0.8687 -80.5 13.1
135  -1366 0.821 -356.8 2784 13.0 -15.68 0.684 -~86.8 13.2
14 -13.53 0.601 -374.3 2034 138 ~16.43 0.851 «-03.2 13.6
1.5 -12.16 0.66% -413.8 3284 144 -17.61 0618 -106.1 13.0
1.6 -8.46 0515 -456.2 371.0 158 -18.14 0579 -119.4 12.7
1.7 -1.81 0477 -491.5  415.1 184 ~18.26 0.546 -133.2 13.2
1.8 +8.42 0.443 -523.4 463.6 21.8 -17.66 0,488 -147.2 14.3
19" 25.26 0,418 -E46.7 5135 26.2 ~-16.41 0.480 -160.7 16.0
2.0 47.56 0.400 -G63.8 - 568.8 27.5 ~13.82 D449 -173.6 15.3
2.1 TT.40 0.381 -581.3 6840.8 30.2 © —8.70 0.411 -188.3 15.7
2.2 114.28  0.370 -EP1.2 7235 33.3 -3.82 0,373 -198.1 16.3

As a funtion of the Fermi momentum kp, it is listed: the energy per nucleon £/4,
M /M, the single-particle scalar and vector potentials Us and Uy, and the wound-
integral k. ' :

Ul is to be compared to Us + Uy, cf. Eq. (10.24).
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Table 10.10: Partial wave contributions to the energy in nuclear
matter (in MeV) for a non-relativistic and a relativistic calcula-

tion.
kp=11fm"1 kp = 1.35 fin~? kp=1.6fm"!
State non-rel. relativ. non-rel. relativ, non-rel. relativ,
15, -10.79 -11.18 -16.01 -16.42 -21.51 -20.36
3P, -2.07 -1.48 -3.74 -1.34 -5.61 +2.17
1p, 1.73 1.77 3.25 3.45 5.33 6.08
. 3p, 4,71 5.27 9.77  12.33 17.69  26.65
35, -15.41 -14.16 -20.10 -17.10 -23.77  -17.03
3P, 0.59 0.57 1.38 1.29 2.64 2.25
1D, -0.95  —0.91 -2.28  -2,01 -457 -3.39
3p, -1.70  -1.62 -4.00 -3.56 -7.71  -5.99
3p, -3.10 -2.92 -7.06 -6.28 -13.31 -10.73
Fy -0.19  -0.18 -0.54  -0.44 -1.19  -0.87
1 0.32 0.31 0.80 0.75 1.60 1.40
iy 0.56 0.55 1.51 1.43 3.20 2.87
3D, -0.01 0.00 -0.03 0.00 ~-0.11  ~0.02
3G 0.06  0.06 0.20 0.18 0.49 0.41
J>4 -0.34  -0.33 ~-1.07  -0.98 -2.57 -2.13
Total :
potential energy  -26.61 -24.25 -37.93 -28.72 -49.38 -18.51
Kinetic energy 14.91 13.07 22,35 15.16 31.23 10.05
Total energy -11.69 -11.18 -15.58 . -18.14  -B8.46

-13.55
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Table 10.11:" Landau parameters at various densities from a
non-relativistic and a relativistic nuclear matter calculation.

| kp ' :
(fn™) demsity foo o @ @
1.0 04p,  relativistic -1.37 0.57 022 0.66
' - non-relativisic -1.50 0.62 0.16 0.66
1.35 po relativistic -0.79 0.35 0.28 0.67
' non-relativisic -1.27 0.38 0.15 0.67 .
L7 . 2p relativistic  0.56 0.29 0.36 0.68 .

non-relativisic -0.99 0.20 0.14 0.69

20 3.25p, - relativistic 2.21 0.37 0.38 0.69
" non-relativisic -0.71 0.08 0.11 0.71

~ See footnote to Table 10.5.
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Table 10.12: Energy per pafticle., E/A, Fermi momentum, kr, and
kompression modulus, K, at saturation for nuclear matter with
and without relativistic effects. '

/A kp &
(MeV) (fm™) (MeV)

relativistic  ~13.60. 1.37 249

non-relativistic -18.30 1 .66 160




Section 11
Finite Nuclei

In this section, by showing some results for finite nuclei, we shall reveal some
striking parallels to nuclear matter. This will underscore the relevance of
nuclear matter for nuclear structure physics. As samples we choose the
A = 3 nucleus and oxygen. The results demonsirate some remarkable
successes of meson-theoretic potentials in nuclear structure.,

11.1 The Three-Nucleon System

The three-body system is presently the only many-body problem which is
~amenable o exact solution. For that reason, this system assumes a special
. Tole in nuclear structure physics. The results we show in Fig. 11.1 are all
obtained in Faddeev calculations (taking 34 channels into account; for more
explanations and references to the various results see (Bra+ 88); the Paris
- energy is from (FGP 88), the charge radius for Potential A from (Kim+
88)). This figure should be compared with the nuclear matter overview
given in Fig. 9.5. This comparison is facilitated by the fact that, in part,
the same potentials have been applied to both systems.!

For the A = 3 system, Fig. 11.1, we plot the energy of the triton versus
the invers charge radius of 3He, the latter quantity being a measure of
density, which makes the comparison with nuclear matter graphs easier.
As announced, the parallels between the two systems are striking. This
is particularly amazing, since three nucleons should be far from being a

1References for the potentials are given in Table 9.1; TRS refers to (TRS 75).

194
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“Figt’ir;’ 11.1: Energy of the triton, £, versus the invers charge ra-
“dius of *He, 1/r., as predicted by various NN potentials. The
experimental point is given by the horizontal error bar. [From (Bra+ 88b)]

piece of nuclear matter. Note, however, that for the A = 3 system the

results have a closer tendency towards experiment: If the energy is right,

“the radius (density) is also (about) right. Tlns may be attributed to the
lower density of the triton. :

“ On the basis of the nuclear matter results of Sectlon 10 5, relativistic
effects should be negligibly small at the (very low) average density of the
triton. Also, —in contrast to nuclear matter — such additional saturation
effects are obviously not need in the three-body system. -

Similar to nuclear matter, in the triton the strength of the tensor force
(as seen in the %-D-state prediction for the deuteron) rules the binding
energy. This is demonstrated in Fig. 11.2 and should be compared with the
nuclear-matter Figure 9.6. The reason for this fact is analogous to nuclear
matter (cf. Fig. 9.8), with the nuclear matter G-matrix to be replaced by
the two-body 7-matrix, which is the input to a Faddeev calculation [see
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Fignre 11.2: Energy of the triton, &, versus the deuteron % D-state
PSP, The solid line is a linear (inter-) extra-polation of the results from
Potentials A, B, and C'. The horizontal dotted line indicetes the empirical
value for the triton energy of —8.48 MeV. [From (Bra+ 88b)]

(Bra+ 88.b) for details].

To give some numbers: for RSC (deuteron D-state probability. P},‘” = 6.5
%) the predicted triton binding energy is B, = 7.35 MeV and the charge
radius of *He is r. = 2.02 fm; for Potential A (Pl{)d) = 4.4 %) one obtains
B, = 8.35 MeV and r. = 1.89 fm and for Potential B (Pg” = 5.0 %)
, = 8.14 MeV. (The given predictions refer to 34-channel calculations; the
experimental charge radius for 3He is 7. = 1.93 £ 0.03 fm; for references see
{Bra+ 88b, Kim+ 88).) o
In Table 11.1 we give a few important further corrections/contributions
to the triton binding energy. The charge-dependence correction is due to
the fact that in the triton np as well as nn pairs interact for which the
strength of the nuclear force differs as seen in the different singlet scatter-
ing lengths (see Table 6.1). For the charge-independent result (first row
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Table 11.1: Contributions to the triton binding energy, B;.

B, (MeV) Reference
Two-body force (2BF)* 8.35 Bra+ 88b
Charge-dependence in 2BF -0.19 Bra+ 88a
. Total 2BF : 8.16
Three-body force? 0.90 HSS 83
Medium effect on 2BF¢ -0.60 HSS 83
. Total 8.46
(Experiment) (8.48)

@ Potential A is applied in a 34-channel calculation.

b Essentially the contribution from diagram Fig. 10.3a using
static 7 and p exchange. ' o : T
¢ Medium effects on diagram Fig. 10.1.

of Table 11.1 with the result 8.35 MeV) the more attractive np force is
used. Results from calculations employing a pp (nn) force are typically less
attractive by about 300 keV than those using a np force. Taking charge-
‘dependence into account yields a result that is about 3/% in-between the
two charge independent extremes, which can easily be understood in terms
of the isospin factors involved (Bra+ 88a). '

Similar to nuclear matter (Sections 10.3 and 10.4), a large cancelation
between three-body force contributions and medium effects on correspond-
ing two-body force diagrams has been found in the consistent calculations
performed for the triton by the Hannover group (HSS 83). In the calcula-
tions quoted in Table 11.1 only single-A excitation is taken into account.
‘When also double-A configurations are included an additional effect of ~1.2
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' MeV on the triton binding energy is obtained which is due to very large
- dispersive effects in those diagrams (HSY 83).

'11.2 The Ground State of Closed—Shell Nu-
| clei

Results from renormalized Brueckner-Hartree-Fock (RBHF) calculations
for the ground state of 0 are shown in Fig. 11.3. Open circles repre-
sent predictions using static two-body forces (MMF 75). The open triangle
is obtained in a calculation which includes effects due to meson and A
isobar degrees of freedom (Ana+ 78). Finally, the squares refer to a non-
relativistic (non-rel.) and a relativistic (relativ.) calculation (MMB 88)
using the potential which we applied to nuclear matter in Section 10.5.
Roughly speaking the various results resemble much of the corresponding
nuclear matter predictions which we discussed in Sects. 9 and 10. How-
ever, in 10 it seems to be more difficult to get enough binding energy as
compared to nuclear matter. It is not clear in the moment if this is due
~ essentially to the problem of how to choose a reasonable particle spectrum
in a finite nucleus calculation. Common choices employ a rather ‘high’ par-
ticle spectrum (harmonic oszillator) causing a large gap relative to the hole
~ states which is known to reduce the binding energy. '

For the relativistic calculation the numbers are (with the corresponding
non-relativistic results given in parenthesis): £/4 = —5.62'MeV (-5.94
MeV) and r. = 2.52 fn (2.36 fm). The experimental values are -7.98
MeV and 2.7 & 0.05 fm, respectively. Three-body correlations/forces may
contribute up to about 1 MeV to the binding energy (Miit 84).

11.3 Exéited States

After we have seen that the relativistic effects considerably improve the
groundstate properties of nuclei, one may wonder how other nuclear struc-
ture properties are influenced. In Fig. 11.4 we show the spectra of two
- A =18 nuclei (MMB 87). One type of calculation uses only the G-matrix
(‘¢’); the calculation denoted by ‘V,;;’ includes some renormalization terms
of the effective many-body Hamiltonian (MMB 87). It is clearly seen that,
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Figure 11.3: Energy per nucleon in °0 versus the inverse charge

radius. Open symbols from non-relativistic RBHF calculations, the full

square from the relativistic Dirac-Brueckner-Hartree-Fock approach. Fur-

ther explanations are given in the text. The error bar denotes the empirical
~ point.

quite in contrast to the nuclear groundstate, the relativistic effect is rather
small for the spectra. This result is quite understandable, since we saw.
in Section 10.5 that the relativistic effects are strongly density dependent.
For small densities they are negligibly small (see Fig. 10.13). The nu-
clear densities, valence nucleons are exposed to, are certainly very low.
Due to the weak tensor force, characteristic for meson-theoretic forces, the
non-relativistic result is already quite satisfactory. This is not spoiled by
relativistic effects. '

As a general balance of just the few nuclear structure results we have
given in this section, one may state that meson-theoretic forces allow for a
more consistent and quantitative description of nuclear structure properties,
as compared to purely phenomenological potentials. Therefore, we like to
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strongly encourage further applications of meson-theoretic forces to nuclear
structure problems. ' '
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More details are given in the text. ‘Exp.’ denotes the experimental values.

[From (MMB 87)]



Section 12

'Summary, Conclusmns, and
Outlook

Nothing endures but change.
' — HERACLITUS

In this article we have been concerned with meson-theoretic approaches
to nuclear interactions and nuclear structure.. We have reviewed the NN in-
teraction up to about 1 GeV including subtle aspects like cha.rge -asymmetry,
charge-dependence and inelasticity. Furthermore, we discussed the many-
~ body problem using meson- theoretic forces. We w111 not summarize again

all the points we have made. However, speaking in general terms, the bal-
ance of these considerations is that for the energy range under discussion
meson models are quite successfull. At low energy and for the two-nucleon
system the description of the data is absolutely quantitative. With increas-
ing energy, the predictions assume a more qualitative character. However,
presently it is not clear if this is a pricipal problem, indicating the limita- -
tions of meson models, or if it is simply due to the fact that the models for
‘higher energy have not (yet) been worked out as carefully as for low en- _
ergy. This point deserves further attention in future research. Particularly
challenging is the energy region of several GeV i in which the inadequacy of
traditional models should clearly be revealed. Presently, very little theo-
retical work exists in that energy range,
- In nuclear matter we have studied explicitly meson and A degrees of
freedom. The inclusion of these degrees of freedom does not improve nuclear
saturation; however, it provides a better understanding of the role of many-
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body forces in nuclear physics: two- and many-body forces should always
be treated consistently; if that is done, there is only a small net effect from
many-body forces. We also discussed & relativistic extension of Brueckner
theory based on meson-theoretic forces. This approach provides additional
saturation such that the empirical properties can be explained. We need,
however, a deeper understanding of the rela.tnnstlc concept behmd this
method. :

" Thus, in spite of the well established success of meson theory in nuclear
physics, particularly in the low energy regime, there are still ma.ny chal-
lenging questions for exciting future research
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-'Apperidi_x A
,'One-Boson-Exchang.e' -
Potentials |

A.1 Intefaction_ Lagrangians and OBE Am-

plitudes
Lagrangians. fb; meson-nucleon couplings are _ :
| Ly = —yp.ﬁi'xsxbtp:“”) — C(Ad)
Lo = ~Eprrgape (a9
L, = +a.dpet . (A.3)
Lo = —adr el - Bogoryonl — o) (A4

with 1 the nucleon and ‘P(:) the meson fields (notation and conventions
as in BD 64, BD 65, IZ 80; see also Section 3.4). For isospin 1 mesons,
©{®) is to be replaced by T - {®) with +! (I = 1,2,3) the usuel Pauli
matrices. ps, pv, s, and v denote pseudoscalar, pseudovector, scalar, and
vector coupling/field, respectively. . ‘

The one-boson-exchange potential (OBEP ) is defined as a sum of one- .
~ particle-exchange amplitudes of certain bosons with given mass and cou-
pling. We use six bosons. Thus,

Vopgp= 3, VOBE (A.5)

a=m,n.pubr
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‘with 7 and 5 pseudoscelar, o and § scalar, and p and w vector parficles.
The contributions from the iso-vector bosons 7, § and p are to be multiplied

by & factor of 7, - 7a.
The Lagrangians mentioned lead to the following (off-shell) OBE amplitudes (Fig. 3.5
“and Eq. 3.10):! IR : S o

(@'2123]V;27% [ad1 da)

—g2,a(d, A)ivtu(a, M)A(—d, A)ivt u(—a, X))

/i - q)® +m,] | - (a8)
3 )
Ad MMV laM ) = é’%’“ﬂ(qﬂi)?“v"i(q'—q)uu(q,-\l)

A
% a(-q', )‘;)757"’:(9' ~ g)p%(~q, Aa)
e —a)* +m,]
2

= B X e g e
+H{(E - E)/@M)Pa(d, ) 1 ula, M)~ Ay u(—q, )
+[(E' - B)/2M)][B(q’, M )7 u(q, M Ya(—q', A\)r 1 u(—q, Aa)
+ﬂ(q',A&);r‘*r”t;(q.h)ﬂ(-q’. P u(—q, )]} '
/[(q' _q) +mpa] . (A'r)

(@ X NVOBB(@Adg) = ~gu(d, M)u(a, M)i(—q', M)u(—g, Aa)
/l(a’ - a)® +m] S

_ {g.ﬂa(q'r ;.)'fp“(qv )‘1)

berald Moy’ - 0 la M)}
x{go 8(—dq', g }7"u(—q, A3) |

— Ea(-q i - (a2}
/e @) ]
= {lg + fo)a(ds Mi)rpula A1) ,
~ e aa, M) + ) + (B - Bl - v ulas )}
x{(go + fo)a(—q', Ag)r" u(-q; Aa) '
- Zr e Ml + 0 + (B - B)e — 11 )lu(-a, M)}
/e’ ~ a)* +md] . )

where A (A:) denotes the helicity of an incoming (outgoing) nucleon which is defined

(A.8)

“H

RCR R A TPIE)

1Gtrictly speaking we give here the potential which is defined as i fimes the Feyn-
man amplitude Eq. (3.10); furthermore, there is a factor of i in each vertex and meson
propagator; as i* = 1, we can ignore these four factors of i. '
g
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~as the eigenvalue of the operator s-§ with s the spin operator and q = q/|q| the unit
momentum operator of the respective nucleon. E = /M3 + qF and E' = /M3 + ¢'°.
The BbS/Thompson choice (see Section 4.1) for the four-momentum transfer is made, i.
e. (¢ — g) = (0,9’ — q). The Dirac equation is applied repeatedly in the evaluations for
the pv-coupling, the Gordon decomposition (BD 64) is used in the case of the v-coupling
(for more details concerning these manipulations see (Mac 86, Section 3.4)). Dirac spinors

_ are normalized covariantly, - . _
(g, A)u(q,A) = 1. (A.10)

with & = uty". The propaga_tox_' for vector bosons is

;9w (8~ 9)uld’ — @)u/m '
A
—(a' - q) —m} (A1)
where we drop the (¢’ — ¢).{q" — q)o~term which vanishes on-shell, anyhow. The off-shell

effect of this term was examined in (HM 75) and was found to be ummport.ant
The relation to the S-matrix is :

ey M3 1
{p\p1)Slpipa) = 6N q — )6 (q’ — q) — i2n6'" (P} + ph - py - p:)—E-;WT(q’. q)

with p; (i = 1,2) the initial and p! the final four momenta of the two interacting nucleons
{i. e. with the notation of Section 4.1: p;{,)z = 1P 4+ ¢!/1), and with T as in Eqs. (4. 15
4.20),% the V in those equations being defined as in Eqs. (A.6-9).

‘ In practise it is desirable to have the potential represented in partial waves, since the
. phase shifts of scattering are only defined in such terms and nuclear structure calculations
are conventionally performed in an LSJ basis. The further formal developments, necessary
to arrive at such a partial wave decomposition for the OBE amplitudes, are presented in
all details in (MHE 87, Appendix E} for the ps, s and v coupling.® The final result for-

the pv coupling is given in (Mac 86, Appendix A). .

A2 Relativistic Momentum Space OBEP

- We give here two examples of relativistic momentum-space OBEP, which
- have proven useful in applications in nuclear structure physics. One poten-
tial is defined within the BbS equation (Section 4.1) and uses the ps cou-
pling for 7w and 7, Table A.1. Together with “minimal relativity” (Section

*Note that the letter 7 is not used consistently throughout this paper; while here and
in Section 4 it denotes a covariant scattemlg amplitude, it denotes e. g. in Section 9.4 a

non-relativistic T-matrix.
Note that there is an error in in Eq. (E52.b) of (MHE 87) where it should read:

MY = Cr{—lg? + ¢® + 4B Elg'ql}™ (my) - ...
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4.1, Egs. (4.16-18)) it can be applied in non-relativistic nucleer structure
physics. The other potential is formulated in the framework of the Thomp-
son equation (Section 4.1) and uses the pv coupling for = and 7, Table
A.2; it is useful for relativistic nuclear structure calculations as outlined in
Section 10.5. As in that relativistic approach pair terms (virtual nucleon-
entinucleon intermediate states) are taken into account implicitly (Bro+
87), the pv coupling is necessary; the ps coupling leads to unphyslcally
large anti-particle contributions (see Mac 86, Section 8.4).
Note that a formfactor
2 ] Na

(=) (A12)
is applied to each meson-nucleon vertex. The coupling constants for the
two different couplings for ps particles are related by

M

TMp,

(A.13)

Ops — fpl

We use units i = ¢ = 1 (he = 197.3286 MeV fm). In the tables, we give

the parameters for the (' = 0 and T = 1) neutron-proton potentials for
- which the average nucleon mass M = 938.926 MeV is used. Proton-proton
potentials can be obtained by a minor change of the o coupling constant
- (of the T = 1 potential); e. g. in the case of the potentials of Table A.1, for
g2/4m = 8.713,8.8557, 8.542 for potential A, B, C, respectively, the proton-
proton singlet scattering length af, = —7.81 fm is reproduced (including
the Coulomb potential and using the proton mass M = 938.28 MeV in the
scattering equation?).

A.3 Coordinate Space Potentials

The momentum space expressions for the OBE amplitudes given in Ap-
pendix A.1 depend on two momentum variables, namely the incoming and
outgoing relative momenta q and o', respectively. A Fourier transformation
of these expressions into coordinate space would yield functions of r and r’,

‘4#Note, that in the potential the average nucleon mass is used in all cases. How charge
dependence due to meson and baryon mass differences is calculated properly, is drscussed
in Section 6.
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the relative distance between the two in- and out-going nucleons, i. e. a non-
local potential. Because of the complexity of the expressions, this Fourier
transformation cannot be done analytically. Both features mentioned are -
rather inconvenient for 7-space calculations. Therefore, it is customary to
simplify the momentum space expressions such that an analytic Fourier
tranformations becomes poasible.® This is achieved by using Dirac spinors
in the representation o '

| B+ 1 \.
w(,8) = | 2 o q )X (A.14)
2M E+M

(with x, a Pauli spinor) for the evaluation of the OBE amplitudes of Ap-
pendix A.1 and defining two new momentum variables

k = qd-q (A.15)
p = 5(d+a) (A.16)

By dropping y, the resulting potential is a operator in spin space, as cus-
tomary. The relativistic energies are expanded in powers of k* and p? keeping the lowest
order. In this way one obtaines the following “reduced” momentum space expressions (for
‘more details concerning the derivation see {Mac 86, Section 3.4)):

g (a.k)(es k)

_ v 4M? "k +mg, o
3 a 2 :
g: p k :
V,(k,p) = _kg +mE[1 - YL + gAL2 - ZMZS ' (k x p)] (A'IB) .
1 4 3p?  K? 3
Valkyp) = m{gu[l-*' 7 s T s (kxp)
k? 1
=70 Ty + (7 Rl |
gofu, K 4 k1
+2M[ M-I-MS (kxp)—o, d’l’lI+M(61 k)(os -k}
+—f'7—[-—o'i o,k + (o, k)(os-k]} (A.19)

4M?

wlhere 8 = %{o’1 + ,) is the total spin of the two-nucleon system.

“Note, however, that the relativistic momentum space expressions of Appendix A.l
allow for a more quantitative description of the NN data, particularly, in the case of
a weak tensor force potential; this is discussed and demonstrated in (MHE 87, Section
9.2-3). '
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These expressions contain nonlocalities due to p? and k x p terms. The latter leads

to the orbital angular momentum operator L = —ir x V in r-space, whereas the former
provides Vi-terms.
A quadratic spin-orbit term, i¢, Loy L+ o, Lo, « L, is obtained when terms

up to the fourth power in the momentum are retained, leading to substantially more com-
_prehensive potential expressions. However, within the type of meson models considered
here, this quadratic spin-orbit term as well as the other terms of higher momenta do not.
improve the fit to the NN data, but cause serious mathematical problems. If substantial
improvements over the expressions Eqgs. (A.17-19) are desired, we recommend to use the
‘complete’ momentum space expressions of Appendix A.1. The role of the quadratic spin-
orbit term is different if it is used as a phenomenological term to be fitted to the data.
Then, particularly, an improvement of the 'D; and 3D, phase shifts can be achieved (HJ
62).
The Fouriex transform, V(r) = (2x)~3 [ d3ke"k‘rV(k), which can now be performed
analytically, yields (see (Mac 86, Section 3.4) for details):

nlmgn®) = g S (TP () — = o
+Z(m,,,r).5'u} (A.20)
Vimas) = = Lm - 2 (m .r)+4M,[vzvtm,r)+r(mar)v=1
+—Z;(m.r)L -8} ‘ (A.21)
Vmor) = L (i1 SV (myr) = Sz VY (mr) + ¥ (mar) 97)
| ;( DY (mar)o - 0 — 3 Zalmar)l 8 ~ 5 2(mar)Sis}
45 L (Y () + 22 Y (mer)e -0,
~4Zy(mar)L+ 8 ~ 2 Z(mar)S1a)
e (AT e, - 0, - = Zmar)Sua) (A.22)
- with |
Y(z) = e%/z (A.23)
Z(z) = (,__)2(1+ + 2)Y(m) (A.24)
Z(s) = —(~—)=mdm (2)

(32 )’( + ,)Y(z) (A.25)
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and
sw = st e o,  (A26)
187 L?
At = ———P - - A.27
v rarz’" r2 ( )

Similar to the o, - o, part of the ps potential, there are §(3}(r) function terms in the
central force and spin-spin part of the vector potential which we dropped. They can be
found in (BS 69). A formfactor, Eq. {A.12), with n, = 1 can be taken into account by
using for each meson potential :

2 2 1 .2

v, 2 T Ao = A.28
(r) = Vu(ma, 1} - K-"TV a{fAa1r) + WV a(Ag,2,T) (A.28)
where Ap.y = Ag + € and Ay 2 = Ay — € with ¢/A, € 1 (¢ = 10 MeV is an appropriate
choice). Units i = ¢ = 1 are used {fic = 197.3286 MeV fm). When using a cutoff of the
kind described, the §3)(r)-function terms drop out.

The effect of a cutoff can be best seen by considering the simple case of n, = 1/2 in
" Bq. (A.12). The effect of such a cutoff is obtained by simply subtracting from a meson-
exchange potential, Egs, (A.20-22), the same expression with the meson mass replaced by
the cutofl mass (using the same coupling constant), i. e. Vo(r) = Vo(ma, r) = Vo(Aa, ).

The V3-terms, though moderate in size, are important; without them, it is impossible
to fit the 1S, and the *P; phase shifts simultaneously. How to solve the r-space Schrodmger
equation for a p3-dependent potentlal is explained in (BS 69, Sig 69)

The configuration space OBEP given in Table A.3 are defined in terms of the expres-
sions given here. Note, that the potentials due to the exchanges of the iso-vector bosons
7, p and & are to be multiplied by a factor of 7, - 7, leading to a factor 1 for the T' =1
and a factor (—3) for the T = 0 potential, The r-space potentials for the different parts
of the nuclear force are plotted for the case of Potential A in Figs. 3.6-8,
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Ta.ble A.l: Relativistic OBEP using the BbS eq. and the ps cou-

pling for = and 7.

Potential A Potential B °
Me '
(MeV}) gi/4r  Al(GeV) g2 /4r Aq(GeV)

Potential C

gl /4n A,,(GeV)

138.03  14.7 1.3 144 1.7

" 14.2 3.0

n 548.8 4 1.5 3 1.5 0 -

p 769 0.86 1.95 0.9 1.85 1.0 1.7

w 782.6 25 1.35 24.5 1.85 24 1.4

] 983 1.3 2.0 2.488 2.0 4.722 2.0

a b 550 8.8 2.0 8.9437 1.9, 8.6289 1.7
(710-720) (17.194) (2.0) (18.3773) (2.0) (17.5667) (2.0)

—eq (MeV) 2.22452 2.22461 2.22459

Pp (%) 4.38 : 4.99 5.61

Qq (Im?) 0.274 ¢ 0.278 ¢ 0.281°¢

e () : 0.8548 € 0.8514 ¢ 0.8478

As (fm~1/3) ~0.8867 0.8860 0.8850

D/S 0.0263 _ 0.0264 0.0266

r4 (fm) 1.9693 1.9688 1.9674

Aup (fm) —23.750 —23.750 - ~23.751

Pyyp (fin) 2.71 2.71 2.69

a; (fm) 5.427 5.424 . 5.419

e = p(0,0) (fm) 1.763 1.761 1.754

Given are the are meson, deuteron, and low energy parameters,
For notation and other information see Table 4.1 and 4.2.

It is always used: f./g, = 6.1 and f,/g. = 0.0,

1y = 1 except n, =2 and n,,.(B) =2,

s Potential presented in Table 4.1.

" The ¢ parameters given in brackets apply to the T =0

NN potential. Potential A uses 710 MeV,

B and C 720 MeV for the & mass.

¢ Meson-exchange current contributions not included.
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Table A.2: Relativistic OBEP using the Thompson eq. and the pv

‘coupling for = and 7.

Potential A

Potential B

Polential C

Mo '

(MeV) g2 /4n Aq(GeV) g2/4x A{GeV) gi/4n Aa(GeV)
T 138.03 14.9 1.05 14.6 1.2 14.6 1.3
n 5488 T 1.5 5 1.5 3 1.5
p 769 0.99 1.3 0.95 1.3 0.95 1.3
w 782.6 20 15 20 1.5 20 1.5
] 983 0.7709 2.0 3.1155 1.5 50742 1.5
o 550 8.3141 2.0 8.0769 2.0 80279 1.8
—¢z (MeV}) 2.22459 2.22468 2.22450
Pp (%) 4.47 5.10 5.53
Qu (Im?) 0.274 © 0.279 ¢ 0.283 ¢
ta (uw) 0.8543 ¢ 0.8507 ¢ 0.8482 ¢
As (fm™1/?) 0.8984 0.8968 0.8971
D/s 0.0255 0.0257 0.0260
yy (fm) -23.752 -23.747 -23.740
Tup (fm) 2.69 2.67 2.66
e (fm) 5.482 5.474 5,475
re = p(0,0) (fm} 1.829 1.819 1.821

Given are the meson, deuteron, and low energy parameters.

For notation and other information see Table 4.1 and 4.2.
It is always used: f,/g, = 6.1, fu/g9., = 0.0, and n, = L.
“ Meson-exchange current contributions not included.
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Table A.3: Non-relativistic configuration space OBEP.

Polential A Potenlial B
. Mg

(MeV) g3 /4r As(GeV) g2/4n An(GeV)

x 138.03 149 . 13 14.9 2.0
7 548.8 2 1.5 0 -
p 769 1.2 1.2 L7 1.1
w 7826 25 1.4 28 1.3
é 983 2.742 2.0 8.729 2.0
e* 550 8.7171 2.0 8.8322 14
(700-710) -~ (17.6205) (2.0) (16.0707)  (2.0)

—€q (MeV) 2.2246 2.2246
Pp (%) S 4TS 5.53
Qq (fm?) 0.274 " 0.279 %
“pa (un) 0.8527 ¢ 0.8483 %
Ag (fm~/?) " 0.8865 0.8860
Dfs . 0.0259 ©0.0263

Gy (fm) -23.75 -23.75
Ty (fm) 2.69 2.70
a; {fm) 5.425 5.423
e = p(0,0) (fm) 1.762, 1.758

Given are the meson, deuteron, and low energy parameters.

For notation and other information see Table 4.1 and 4.2.

It is always used: f,/g, =6.1, fu/g9, = 0.0, and n, = 1.

%The o parameters given in brackets apply to the T =10

NN potential. Potential A uses 710 and B uses 700 MeV for the ¢ mass.
b Meson-exchange current contributions not included.



Appendix B

Models Including Isobar
Degrees of Freedom

Interactions between N, A, v and p are glven by the following interaction
Lagrangians

Lyar = -—fNA"zET-:,N‘B o™+ h.e. (B.1)
Lyap, = f:t”¢ SyH ¥ (8, tp“’) o, ch")) + h.c. (B.2)-

where 1, is the Rarita-Schwinger field (RS 41b, Lur 68, Dum+ 83) de-
scribing the (spin 3) A-isobar and T the isospin transition operator; h.c.
stands for hermitean conjugate. AA vertices are disregarded in view of the
‘uncertainties about their form. _ '

The relativistic transition potentials involved in the coupled channel,
Eq. (7.3), are determined by these interaction Lagrangians and those of
Appendix A.1. For the NN — NN transition they are given in Appendix
A.l. The other two relativistic transition potential, namely NN — NA
and NN — AA, are derived explicitly in (HM 77) for = exchange, and in
(Hol+ 78} for p exchange. Here, we give three examples of coupled channel
models (Table B.1). Model I {which uses relativistic transition potentials)
is similar to (HM 77), however with the following extensions: firstly, it
includes (besides the pion) also p exchange; secondly, in the meson prop-
agators, it takes the mass difference between nucleon and isobar properly
into account (see below); and finally, it includes the width of the A as given

214
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4

by the imaginary part of the A self-energy (Fig. 7.4b) which produces the
inelasticity in these models. Model II is similar, however, uses Thompson-
type of relativistic two- ba.ryon propagators and applies the pv coupling for
w and 7.

Model 11T uses the non-relativistic reductions of the transition potentials. These can
be obtained in analogy to the considerations for the NN — NN transition potentials of
Appendix A.3. They are as follows (notation as in Eq. (7.3)) [from (Els 86); cf. (SH 68),
(NGS 79), (Dym+ 88)): '

NN+ NA
vist grfNAlr( k)(S k){L + 1 }r.- T2 (B.3)
12 aMm, o RGN o T Ma — M oy
VI(:;:) = {(gp + fp)fNAﬂ( o xk) (S,xk)‘
+%ﬂﬂ[4is, - (k x p) — (ers xk) - (8, xk)]}
P
1 1, '
Gt e, T *9
NN — AA:
{r}] __ __f}z\wa (Sl-k)(Sz-k) .
Vo' = T o Ma - Mtw) ()
3 .
Vl(:;.) __fNAp (Slxk) (Szxk) Tl'T:l _ (B.G)

mi‘, we(Ma — M +w,)

“where 8; and T; are appropriate spin and isospin_transition operators between nucleon
and A states [see (BW 75, SP 76)], wo = \/m? + k?, and Ma(=1232 MeV) denotes the
mass of the A-isobar.

The analogy between, in particular, the transition potentials Eq. (B.5-8) and the #
‘and p NN — NN potentials discussed in Section 3.4 is obvious. Note, however, that
ithe second term in Eq. (B.4), which deviates from the simple sceme, is important for a
‘quantitative model (Els 86).

The meson propagators given in Eqs. (B.3-6) (which are also used for Model T and
1I) can be understood in terms of time-ordered perturbation theory neglecting the kinetic
energies of the baryons (Hol+ 78,Dur+ 77). The main point is that the mass difference
between nucleon and A enters the propagator; this is important to obtain a realistic size

" and range for these transition potentials (Hol+ 78).

In apite of the differences between the three models, the predictions are very similar.

Results obtained using Model I are shown in Section 7. '
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Table B.1: Coupled channel models for the NN interaction.

Model I Model IT Model IIT

My g2 /47 or g2 /A or g2 /4w ot

(MeV)  fR . /41 As(GeV) fhao/Am  Al(GeV)  fi,. /41 An(GeV
NNnm 138,03 14.4 1.8 © 14,4 1.6 14.6 1.6
NNn 5488 5 2.0 2 1.5 0 -
NNp 769 0.7 2.2 1.1 1.3 0.9 1.4
NNw - - 782.6 22 2.2 23 1.5 24 1.55
NNog® 550 4.13 2.0 3.7 1.5 5.685 2.0

(550)  (6.32) (1.5) (2.5) b (1.5) (6.1692)  (2.0)
NAn 138.03 0.35 0.85 0.35 0.9 0.35 0.8
NAp 769 19 1.3 20.45 1.4 20.45 1.35

—eq (MeV) 2.225 2.2245

Py (%) 4.92 4.87
Qu {fm?) 0,284 ¢ 0.278 ©
Ag (fm=1/3) 0.8973 0.8954
D/s 0.0264 0.0257
ayy (fm) —23.77 —23.78
Tup (f) 2.70 2.71
as (fmm) 5.47 5.46
ry = p(0,0) (fm) 1.82 1.82

Given are the are meson, deuteron, and low energy parameters.

It is always used: f,./g, = 6.1 and £, /g, = 0.0; Ma = 1232 MeV.

no = 1 except nyn () = 2, nu{I}) = 2, nya, =2

* The o parameters given in brackets apply to the T = 0 NN potential.
“Model 11 uses m, = 500 MeV for T = 1 and m, = 450 MeV for T = 0.

* Meson-exchange current contributions not included.



Appendix C

Deuteron Wave Functions

In this Appendix we present the deuteron weve functions considered in
Section 4.2 and shown in Fig. 4.5. The three meson-theoretic potentials
‘which generate these wave functions, denoted by A, B, and C, are defined
in Appendix A, Table A.1. They are discussed in Section 4.2. In Table
(C.1-3 numerical values are given. As customary, u(r) denotes the S-wave,
and w(r) the D-wave. The normalization is '

| [7 @) +ut) =1 (C.1)

" Table C.4 presents the coefficients of the following parametrization of
the waves (cf. Lac+ 81, MHE 8T7). The ansatz for the analytic version of
the r-space wave functions is ' ' S

uq(r) = gG,-exp(—m,-r) (C.2)
we(r) = Zi:l.DJ-exp(—mjr)(l-!—mir (m::r)z)' (C.3)

The corresponding momentum space wave functions are

B0 = QY (C4)
#(e) = @Y (©5)

7 1 m?
j=1 q +m'J
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with the normalization

[ adali(e) + ¥i(a)] = 1. (C.6)

The boundary conditions u.(r) — r and wg(r) — 7° as » — 0 lead to one
constraint for the C; and three constraints for the D;, namely

n—1

=
m2 n-=3 D n
Dﬂ_ — n—2 - _2 '2 ' 3
? (m2 — mi_, (m_, — mi—z)[ Mn=1Tin j=1 f

; n—-3 n=3
+(mi_y +m2) >, D; — 3 Dym]] (C.8)
i= i=1 o

~ and two other relations obtained by circular permutation of n —2,n —1,n.
The masses are '

my=a+(j—1)me | (C.9)

with mg = 0.9 fm~? and o = (—e,M)Y? = 0.231607 fm ™.

Note that the parametrization is not very accurate for the D-waves for
r S 0.5 fm. If it is expected that results might depend sensitively on the
~ very short range part of the wave function, we recommend to use the numer-
" jcal values as given in the Tables together with a cubic spline interpolation
for » S 1 fm, and the analytic form for the larger r. _

Data files for the deuteron wave functions in r-space as well as in mo-
mentum space can be obtained from the author upon request.
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Table C.1: Coordinate-space deuteron wave functions as predicted
by Potential A (Pp = 4.38%) ' '

——

r (fm}

u(r) (fm~1/?)

w(r) {fm=117)

r (fm)

ulr) (Bm=112)

wlr) (Em~1/2)

0.100E — 01

© 0.200E - 01
 0.300E ~ 01
! 0.400F - 01
0.500F — 01

- 0.600F — 01
0.700E - 01
0.800F - 01
0,800E — 01
0.100F + 00

. 0.200E 4 00
| 0.300E 4 00
0.400E 4 00
0.500F 4 00
0.800F + 00
0.700E + 00
0.800E -+ 00

"~ 0.000F 4+ 00
- 0.100E+ 01
- 0,110E+ 01
. 0.120E 401
. 0.130E + 01

. 0.140E + 01
' 0.180E + 01
! 0.160E + 01
0.1T0E 4 01
0.180E 4 01
0.190E 4 01
0.200F + 01
0.210E + 01
0.220F + 01
0.230F + 01
0.240E + 01
0.250F 4 01
0.260F 4+ 01

0.312020E — 02
0.623446E — 02
0.833701F — 02
0.124566E — 01
0.155832E — 01
0.186802F — 01
0.218061E — 01
0.249184E — 01
0.280402E — 01
0.311678E — 01
0.633606F — 01
0.906283E = 01
©.143027E + 00
0.193063E + 00
0.249389F + 00
0.304560L + 00
0.355345E + 00
0.399332F 4+ 00
0.435600E + 00
0.464220E + 00
0.4858658 + 00
0.501436E + 00
0.5118225 4 00
0.518216E + 00
0.521120E 4 00
0.5213505 4 00
0.519432E + 00
0.515822F 4 00
0.510800EF + 00
0.504034F + 00
0.4081845 + 00
0.400820E 4 00
0.4829935 + 0D
0.474821E + 00
0.466404E + 00

0.453076F - 06
0.215223E — 04
0.24362TE — 04
~0.636776E — 06
—0.36010TE — 04
—0.355240EF —~ 04
—0.221080F — 04
—0.283613E — 04
—0.638002F — 04
—0.821484E ~ 04
—1.618530F — 03
—0,151511E — 02
—0.160713F - 02
0.1448T9E — 02
0.102004F - 01
0.257612E — 01
0.461007E — 01
0,682102F — 01
0.892498E — 01
" 0.10T427TE + 00
0.121029E 4- 00
0.132646E + 00
0.138012E + 00
0.144256E 4 00
0.146213E -+ 00
0,146269E -+ 00
0.144865F + 00
0.142380F + 00
0.13%110F + 00
0.135277E + 00
0.131056E + 00
0.1268687E - 00
0.121000F 4 00
0.117353E 4 00
0.112730E + 00

0.270E + 1
0.280F 4 01
0.200E + 01
0.300F 4 01
0.320E 4 01
0.340E 4 01
0.3605 + 01
0.380E + 01
0.400F + 01
0.420E + 01
0.440F 4 01
0.460E + 01
0.480E + 01
0.500F + 01
0.520E + 01
0.540F + 01
0.560F + 01
0.580F + 01
0.600E 4 01
0.650F + 01
0.700E + 61
0.750E + 01
0.800E + 01
0.850E + 01
0.900E + 01

0.060E 4 01

0.100E + 02
0.105E 4+ 02
0.110E + 02
0.115E 4 02
0.120F 4 02
0.126E + 02
0.130F + 02
0.136F + 02
0.140F 4 02

0.457820F 4 00
0.449130F 4 00

" 0.440381F 4 00

0.4318138 + 00
0.414181E 4 00
0.356980F 4 00
0,380185F 4 00
0,362883E + 00
0.348070F + 00
0.332848E + 00
0.31B176E + 00
0.30408TE 4 00
0.290660KF 4 00
0.277602E 4 00
0.2651805 4 00
0.253205F + 00
0.241824E + 00
0.231044E 4+ 00
0.220640F + 00
0.196608E + 00
0.176168E 4 00
0.156038E 4 00
0.138991F + 00
0.123804E 4 00
0.110272E + 00
0.982187HF — 01
0.8T74798E — 01
0.77191M4E -0
0.6939668.F — 01
0.6180B4E — 01
0.550486F - 01
0.400305E — 01
0.4386080E — 01
0.388038E — 01
0.346412E — 01

0.108156E + 00
0.103686F + 00
0.993017E —~ 01
0.950583EF — 01
0.870387F — 01
0,798134E — 01
0.728083F — 01
0.8660T4E - 01
0.808560E5 — 01
0.5581848 — 01
0.511621F - 01
0.409387E — 01
0.431064F — 01
0.306233E - 01
0.304640F — 01
0.335964E — 01
0.300864F - 01
0.286063F — 01
0.2643685F — 01
0.218149F — 01
0.181022E — 01
0.151155E — 01
0.126700E — 01
0.1080418 - 01
0.805030F — 02
0.769707TE — 02
0.856231F — 02
0.561603F — 02
0.452034E — 02
0.414648EF — 02
0.357714E — 02
0.309007E — 02
0.267516E ~ 02
0.232187TE — 02
0.201588E - 02
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Table C.2: Coordinate-space deuteron wave functions as predicted
by Potential B* (Pp = 4.99%) o

r (fn)

u(r) (fm=1/3)

w(r) (fm—1/2)

r (fm)

u(r) (fm=1/3)

wir) (fm—%/?)

0.100E - 01
0.200F - 01
0.300F — 0%
0.400E ~ 01
0.600F - 01

. D.800E - 01

.0,700F — 01
0.860F — 01
0.900F - 01
0.100E + 00
C.200E + 00
0.300F + 00
0.400E + 00
06008 + 00
0,600 + 00
0.700E + 00
0.800E 4+ 00
0.9008 + 00
0.100E 4 01
0.1105 + M
0.120F 401

.0.130E + 01
0.140F 4 01
0.150E 401
0.160E 4 01
0.1T0E 4 01
0.180E + 61
0.180E + 01
0.200F + 01
0.210E + 01
0.220E + 01
0.230F + 01
0.240F + 01
0.260F 4 01
0.260F + 01

0.248747E — 02
0.408888F — 02
0.749077F — 02
0.100120E — 01
0.126336F — 01
0.160791F — 01
0.176619F — 01
0.202476E -~ 01
0.228683F — 01
0.255204F — 01
0.544739E — 01
0.8066E7E — 01
0.132846E + 00
0.182817E + 00
¢:237766E + 00
0.283108E + 00
0.346068E + 00
0.300843E 4 00
0.420071E + 00
0.459480F + 00
0.482600F + 00
0.499203F + 00
0.5105T0E + 00
0.517408E + 00
0,620881F + 00
0.521124F + 00
0.519336F + 00
0.515795E + 00
0.510897E + 00
0.504940F + 00
0.498191F + 00
0.400811E + 00
0.482963E + 00
0.474771E + 00

0.466336E + 00

-0.121840E — 05
-0.451284F - 06
0.19514BE ~ 05
0.268024E — 04
0.803822F — 04
0,926472F — 04
0,131441F — 03
0.188509E - 03
0.267567E — 03
0.360556F — 03
0.227801E — 02
0.642302F — 02
0.134377E ~ 01
.-0.241044E — 01
0.388670E — 01
0.571739EF — 01
0.7740008 — 01
0.973816E — 01
0.116298E + 00
0.130064E + 00
0.141282F + 00
0.140062F + 00
0,153760F + 00
0,166846F + 00
0.166081E + 00
0.164625E + 00
0.151871E + 00
0.14B447E + 0D
0,14430BE + 00
0.138748F + 00
0.134821F + 00
0.12994BE + 00
0.124924E + 00
0.119819E + 00
0.114881E + 00

0.270FE + 01
0.280E + 01
0.280F + 01
0.300F 4 01
0.3205+ 0
0.340E+ 0
0.360F + 01

0.380E + 01 .

0.400E 4 01
0.420F + 01
0.440F 4 01
0.460F + 01
0.480F + 01
0.500F + 01
0.520E + 01
0.5408 + 01
0.560E + 01
0.580F + 01
0.600F + 01
0.650F + 01
0.700F + 01
0.750E + 01
0.800E 4 01
6.850E 4 01
0.9008 + 01
0.9508 + 01
0.100F 4 02
0.105E + 02
0.110E -+ 02
0.116E + 02
0.120F + 02
0.125E 4 02
0.130F + 02
0.1355 + 02
0.140F 4 02

0.457732E + 00
0.440022F + 00
0.440266F + 00
0.431474E + 00
0.414000F + 00
0.396803E + 00
0.379996F + 00
0.363669F + 00
0.347882F + 00
0.332848F5 + 00
0.317979E + 00
0.303803E + 00
0.200380F + 00
0.277417E 4 00
0.265000E + 00
0.263122F + 00
0.241767E + 00
0.230882E 4 00
0.220483E + 00
0.196469F + 00
0.175032F + 00
0.156924F + 00
0.138880F + 00
0.123713E + 00
0.110188E + 0D
0.981434E — 01
0.B74143F — 01
0.778657E — 01
0.603432F — 01
0.617616E — 01
0.550087E — 01
0.480031E - 01
0.438356F — 01
0.388630F — 01
0.346146E — 01

0.210141E + DO
0,105420F + 00
0.100859E + 00
0.984540F ~ 01
0.881610E - 01
0.806192E ~ 01
0.736507E — 01
0.672180F — 01
0.614870F — 01
0.562621E — 01
0.516286E — 01
0.472633F — 01
0.433787E — 01
0.3986105 — 01
0.366712E — 01
0.337796E — 01
0.311407E — 01
0.287516% — 01
0.265666F — 01
0.2101695 — 01
01818215 — 01
0.161801LE — 01
0.127322F — 01
0.107381F — 01
0.908734E — 02
0.772802F — 02
0.858870F — 02
0.583937F - 02
0.483964F — 02
0.4162085 — 02
0.350128F ~ 02
0.310236F — 02
0.268681F — 02
0.233112F — 02
0.202388E — 02

® Model presented in Section 4, Table 4,1 and 4.2.
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Table C.3: Coordinate-space deuteron wave functions as predicted
‘by Potential C (Pp = 5.61%)

* (fm)

u(r) (fm=?/7}

w(r) (m=*/?)

r (fm)

u(r) (fm””’)

ulr) (1)

‘8.100E — 01
0.200F — 01
0.300F - 01

. 0.400E — 01
' 0.500E - 01
0.600E — 01
0.T00E — 01
0.800F — 01
0.900F — 01
0.100E + 00
0.200E + 00
0.300E + 00
0.400E + 00
0.500F + 00

© 0.800E 4 00
- 0.T00E 4 00
0.800E + 00
0.800E + 00
0.100F + 01
0.110E 4+ 01
0.120E + 01
0.130E 4 01
0.140E 4 01
0.150F + 01
0.160F 4 01

~ 01TOE 401

‘0.180E+ 01
0.180E + 01
0.200E 4+ 01
0.210E + 01
0.220E 4 01
0.230F + 01
0.240F + 01
0.350F 401
0.200F + 01

0.165081F — 02
0,312806E — 02
0.4T3514F - 02
0.638350E ~ 02

 0.803106E - 02

0.976340F — 02
0.115883F — 01
0.134417E - 01
0.153874E - 1
0.174154E - 01
0.428078E - 01
0.7T8107E — 01
0.121760F 4 00
0.172999F + 00
0.2286831F + 00
0.284808E + 00
0.33TTALE + 00
0.384628F 4 00
0.423984F 4 00
0.455405E 4 00
0.479404E + 00
0.406821E 4 00
0.508667E 4 00
0.515943F 4 00
0.519542E + 00
0.520218E + 00

" 0,518604E 4 00

0.5161T1E + 00
0.510352E + 00
0.504456E 4+ 00
0.48TT30E 4 00
0.480372E + 00
0.482537E 4 00
0.4T4353F + 00
0.485821 E + 00

'—0.980515E — 0T

0.462824F — 05
0.3347405 ~ 04
0.101252E - 03
. 0.201916E - 03
0.32T973E - 03
0.490328E - 03
0.704392F — 03
0.971753E — 03
0.128722E - 02
0.708008E — 02
0.172088E — 01
0.308844EF — 01
0.474082F - 01
0.660273E — 01
0.8568365F — 01
0.1048680 4 00
0.122386E 4 00
0.13T187TE 4 00
0.148762F + 00
0.16TOG0E + 00
0.162280F + 00
0.164868E + 00
0.165280E - 00
0.163988E + 00
0.161324FE + 00

. D.15T698E 4 00

0.163371F 4 00
" 0.148560E + 00

. 0.143437E + 00

0.138140F 4 00
0.132T7T4AF + 00
0.12T414F + 00
0.122118E + 00
0.116938E + 00

0.27T0E + 01
0.280E + 01
0.280F + 01
0.300F + 01
0.320E + 01
0.340F + 01
0.380F + 01
0.380E8 4 01
0.400E + 01
0.420E 401
0.440F + 01
0.460E + 01
0.480F + 01
0.500F + 01
0.520E 4+ 01
0.540E + 01
0.560E + 01
0.580E 4 01

0.8008 + 01 -

0.650E + 01
0.700E + 01
0.750E + 01
0.800F + 01
0.850E + 01
0.8005 + 01
0.850E + 01
0.100E + 02
0.105E + 02
0.110E + 02
0.116E + 02
0.120E + 02
0.126E + 02
0.130E + 02
0.136E + 02
0.140F 4 02

0.457320F + 00
0.448012E 4 00
0.43984TE + 00
0.431080E + 00
0.413506E + 00
0.396405E 4 00
0.375804 E + 00
0.363286F + 00
0.347510E + 00
0.332287E 4+ 00
0.317830E 4 00
0.30385TE 4 00
0.280066F 4 00
0.277106E + 00
0.264T01E + 00
0.252836E 4 00
0.241433EF + 00
0.230610F + 00
0,220231E 4 00
0.1p8243EF 4 a0
0.174830E + 00
0.166745E + 00
0.138T28E + 00
0.1235T0F + 0D
0.110062F 4 00
0.980302F — 01
0.873134E - 01
0.777650E — 01
0.682633E — 01
0.818804F — 01
0.540433F — 01
0.480387E - 01
0.435883E — 01
0.388182F — 01
0.345T4TE - 01

0.111876E 4 00
0.108079F + 00
0.102283E + 00
0.0TTOTAE — 01
0.891696E — 01
0.813643E — 01
0.7425845 ~ 01
0.678008E — 01
0.619733E - 01
0.566870F — 01
0.512027E - 01
0.4757¢6E — 01
0.436861E — 01
0.401147E — 01
0.368956E — 01
0.339801E — 01
0.313303E — 01
0.280139E — 01
0.267T138E — 01
0.220322E - 01
0.182768E —~ 01
0,162665E — 01
0.13T957E — 01
0.107808E - 01
0.013184F — 02
0.776546F — 03
0.662081E — 02
0.566662F — 02
0.486288E — 02
0.418223E — 02
0.360850E — 02
0.311731E ~ 02
0.260878E — 02
0.234231E - 02
0.203364F — 02
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Table C.4: Coefficients for the parametrized deuteron wave func-
tions. (n = 11)

ta.

€; (fm~1/2) D; (fm™1/7)

Potential A (Pp = 438 %) :

Potential B (Pp = 4.00%) " :

Potential C (Pp = 5.61%) :

[y .
- O MDA O B b

H O MmO LR e

-

[y
O D 00 -3 O OF e W R

et

0.886881402F 4 00 0.23346605F — 01

—D.27176295E 4 00
-0,38234310E + 00
—0.97309200E 4 01
0.67873078F 4+ 02
—0.21112738E + 03
0.42788416E 4 03
~0.46272723K + 03
0.25255966F + 03
—D.54964803F + 02

~0.178286682F — 03"

0.88611410E 4 00
—0.24885006F + 00
—0.88346659EF 4 00
—0.4884T106E + 01

0.347565263F 4 02
—0.16379524F 4+ 03

0.38880024F 4 03
—0.46666677E + 03

0.27495507E + 03
-0,64119028E + 02

0.37567807E - 03"

0.88507048E 4 00
—0,24105461E + 00
—0.10338683E + 01

' —0.20885428F 4- 01

0.2525B598E + 02
—0.13992344F + 03
0.36051215F + 03
--0.45277411E + 03
0.27676633F + 03
—0.66461680F + 02
0.54330150% — oa®

—0.57467657E + 00
0.82159360E + 00
—0.,10072048F + 02
0.21821344F + 02
—0.34389604F + 01
—0.20T0T396E + 02
0.12048237E + 02
—0.18001970E + 01*
0.43848361F 4 01*
-0.26061724F + 01®

0.23437728F - 01
~0.64666TE08 4 00
0.51660408E + 00
—0,73905273E 4 01
0.16323356K + 02
—0.34932110F 4 01
—0.12845278E + 02
0.7T4184734F 4- 01
—0.95T60509E + 00*
0.23154287E + 01"
—0.13661060F 4 01*

0,23650301E - 01
—~0.52404123F + 00
0,16311637E + 00
—0,50123809EF 4 01
0.11340227F + 02
—0.23474988F + D1
—0.81817T27TE + 01
0.45534080F 4 01
~0.63335941E + oo0*
0.15306084E + 01”
—0.80175846 E 4 00"

4 Model presented in Section 4, Table 4.1 and 4.2.
® To obtain a higher nunierical accuracy for small r, the last C; and the last three D;

can be computed from Eq. (C.7) and {C.8), respectively.
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